Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification.
Both low strain hysteresis and high piezoelectric performance are required for practical applications in precisely controlled piezoelectric devices and systems. Unfortunately, enhanced piezoelectric properties were usually obtained with the presence of a large strain hysteresis in BaTiO (BT)-based piezoceramics. In this work, we propose to integrate crystallographic texturing and domain engineering strategies into BT-based ceramics to resolve this challenge. [001] grain-oriented (BaCa)(TiZr)O (BCTZ) ceramics with a texture degree as high as 98.6% were synthesized by templated grain growth. A very high piezoelectric coefficient (d) of 755 pC/N, and an extremely large piezoelectric strain coefficient (d* = 2027 pm/V) along with an ultralow strain hysteresis (H) of 4.1% were simultaneously achieved in BT-based systems for the first time, which are among the best values ever reported on both lead-free and lead-based piezoceramics. The exceptionally high piezoelectric response is mainly from the reversible contribution, and can be ascribed to the piezoelectric anisotropy, the favorable domain configuration, and the formation of smaller sized domains in the BCTZ textured ceramics. This study paves a new pathway to develop lead-free piezoelectrics with both low strain hysteresis and high piezoelectric coefficient. More importantly, it represents a very exciting discovery with potential application of BT-based ceramics in high-precision piezoelectric actuators.
Plants are key to the functionality of many ecosystem processes. The duration and intensity of water stress are anticipated to increase in the future; however, a detailed elucidation of the responses of plants to water stress remains incomplete. For this study, we present a meta-analysis derived from the 1,301 paired observations of 84 studies to evaluate the responses of plants to water stress. The results revealed that although water stress inhibited plant growth and photosynthesis, it increased reactive oxygen species (ROS), plasma membrane permeability, enzymatic antioxidants, and non-enzymatic antioxidants. Importantly, these responses generally increased with the intensity and duration of water stress, with a more pronounced decrease in ROS anticipated over time. Our findings suggested that the overproduction of ROS was the primary mechanism behind the responses of plants to water stress, where plants appeared to acclimatize to water stress, to some extent, over time. Our synthesis provides a framework for better understanding the responses and mechanisms of plants under drought conditions.
Abstract. The impacts of clouds and atmospheric aerosols on the terrestrial carbon cycle at semi-arid Loess Plateau in Northwest China are investigated, by using the observation data obtained at the SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University) site. Daytime (solar elevation angles of larger than 50 • ) net ecosystem exchange (NEE) of CO 2 obtained during the midgrowing season (July-August) are analyzed with respect to variations in the diffuse radiation, cloud cover and aerosol optical depth (AOD). Results show a significant impact by clouds on the CO 2 uptake by the grassland (with smaller LAI values) located in a semi-arid region, quite different from areas covered by forests and crops. The light saturation levels in the canopy are low, with a value of about 434.8 W m −2 . Thus, under overcast conditions of optically thick clouds, the CO 2 uptake increases with increasing clearness index (the ratio of global solar radiation received at the Earth surface to the extraterrestrial irradiance at a plane parallel to the Earth surface), and a maximum CO 2 uptake and light use efficiency of vegetation occur with the clearness index of about 0.37 and lower air temperature. Under other sky conditions, CO 2 uptake decreases with cloudiness but light use efficiency is enhanced, due to increased diffuse fraction of PAR. Additionally, under cloudy conditions, changes in the NEE of CO 2 also result from the interactions of many environmental factors, especially the air temperature. In contrast to its response to changes in solar radiation, the carbon uptake shows a slightly negative response to increased AOD. The reason for the difference in the response of the semi-arid grassland from that of the forest and crop lands may be due to the difference in the canopy's architectural structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.