Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Assessing the economic impact of sand and dust storms provides critical insights to policy development and reforms; a subject that is gaining more attention as risk management becomes the dominant approach for hazard mitigation policies. To assess the causal impact of sand and dust storms on agriculture, specifically on crop and livestock revenue and physical production, random year-to-year variations in dust exposure were analyzed using a fixed effect regression. To complete this analysis, weather and climate data from the on-ground meteorological stations was combined with the household level socioeconomic surveys conducted by Mongolia’s National Statistics Office (NSO) over a decade. The descriptive statistics of the meteorological data collected over the eight years period show that, on average, 29 dust events have occurred every year across the country, with greater variation among provinces (Aimags) and regions, reaching up to 108 events in a year in some provinces. The overall trend reveals a slight decrease in the dust events from 2009 to 2019. The econometric results show that value of crop and livestock production (gross income) and physical yields significantly decline in response to higher frequencies of sand and dust storms events. During this period, Mongolia experienced a 2.7% decline in crop revenue as a result of additional sand and dust storms. Assuming 2.7% constant decline in revenues across all agricultural sub-sectors and regions or Aimags, this could lead to about $37.8 million in losses to the economy, which is equivalent to about 0.27% of the national GDP of Mongolia. Increases in the frequency of sand and dust storms could reduce agricultural productivity by between 1.5% to 24%, depending on the crop. Estimates from the modelling exercise are robust to potential endogeneity bias in the measure of sand and dust storms; different specification and identification approaches accounting for the endogeneity bias consistently reveal negative and qualitatively similar impacts of sand and dust storms on crop and livestock productivity.
Assessing the economic impact of sand and dust storms provides critical insights to policy development and reforms; a subject that is gaining more attention as risk management becomes the dominant approach for hazard mitigation policies. To assess the causal impact of sand and dust storms on agriculture, specifically on crop and livestock revenue and physical production, random year-to-year variations in dust exposure were analyzed using a fixed effect regression. To complete this analysis, weather and climate data from the on-ground meteorological stations was combined with the household level socioeconomic surveys conducted by Mongolia’s National Statistics Office (NSO) over a decade. The descriptive statistics of the meteorological data collected over the eight years period show that, on average, 29 dust events have occurred every year across the country, with greater variation among provinces (Aimags) and regions, reaching up to 108 events in a year in some provinces. The overall trend reveals a slight decrease in the dust events from 2009 to 2019. The econometric results show that value of crop and livestock production (gross income) and physical yields significantly decline in response to higher frequencies of sand and dust storms events. During this period, Mongolia experienced a 2.7% decline in crop revenue as a result of additional sand and dust storms. Assuming 2.7% constant decline in revenues across all agricultural sub-sectors and regions or Aimags, this could lead to about $37.8 million in losses to the economy, which is equivalent to about 0.27% of the national GDP of Mongolia. Increases in the frequency of sand and dust storms could reduce agricultural productivity by between 1.5% to 24%, depending on the crop. Estimates from the modelling exercise are robust to potential endogeneity bias in the measure of sand and dust storms; different specification and identification approaches accounting for the endogeneity bias consistently reveal negative and qualitatively similar impacts of sand and dust storms on crop and livestock productivity.
Abstract:The Xinjiang Region in Northwest China is known as the "dust center" of the Eurasian mainland. Dust on the leaf surface affects overall plant development. While emphasis was on studying the impacts of industrial dust particles on crop development, the effect of natural dust deposition on the physiological parameters of cotton had not been studied before. The objective of this study was to examine the effects of dust deposits on cotton leaves and to estimate their impact on crop development and yield. For this purpose, an experiment was set up having two treatments and a control. In Treatment 1, cotton leaves were cleaned with water at three-day intervals or after a natural dust fall. In Treatment 2, 100 g·m −2 of dust was applied at 10-day intervals. The control received neither additional dust nor cleaning. In all of the treatments, stomatal conductance, leaf temperature, biomass and yield were measured. The results show a 28% reduction in yield and 30% reduction in OPEN ACCESSWater 2015, 7 117 stomatal conductance of the dust treatment compared to the control treatment. This indicates blocking of the stomata on the top of the leaf surface. In addition, the canopy temperature of the dust-applied leaves was always higher than the control and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.