Objective: Ovarian cancer (OC) is the leading cause of death among gynecological tumors; however, no effective treatment is currently available. Fucoidan, which is extracted from marine algae, has significant anti-cancer effects. The aim of this study was to determine the effects of fucoidan on the proliferation and apoptosis of OC cells through inhibition of the PI3K/Akt signaling pathway. Methods: Human ovarian normal epithelial cells (IOSE80) and human OC cells (SKOV-3, A2780, OVCAR-3, TOV-112D, and Caov-3) were selected to verify the safety of fucoidan at various doses in SKOV-3 and Caov-3 cells as well as a xenograft mouse model using various molecular biology techniques. Results: Fucoidan had no significant effect on normal ovarian epithelial cells, but had significantly inhibited the proliferation of OC cells, induced cell cycle arrest at the G0/G1 phase, increased the proportion of apoptotic cells and expression of pro-apoptotic proteins, and inhibited the expression of PI3K and phosphorylation of Akt, which could be partly rescued by IGF-1. Conclusion: Fucoidan had anti-tumor effects both in vivo and in vitro via a mechanism that is related to the inhibition of the PI3K/Akt signaling pathway.