“…The successful interpolation tests for the 2D and 3D (anti)symmetric trigonometric functions [2,9,10,12] indicate matching interpolation behavior of the corresponding Fourier-Weyl transforms as well as relevance of both types of transforms in data processing methods [20]. In particular, the vast pool of recursive algorithms for fast computation of the (multivariate) trigonometric transforms [11] becomes linked to the central splitting of the discrete Fourier-Weyl transforms [21,22] and vice versa. Moreover, the cubature rules [23] of the multivariate Chebyshev polynomials, that are obtained from the (anti)symmetric trigonometric functions [9,10] and associated with the Jacobi polynomials [5,24,25], are further intertwined with the Lie theoretical approach [8,26,27].…”