Abstract. Kinesin was isolated from bovine brain and used to elicit polyclonal antibodies in rabbits. The specificities of the resulting antibodies were evaluated by immunoblotting. Antibodies purified from these sera by their affinity for brain kinesin react with a polypeptide of '~120 kD in extracts from bovine brain, PtK~ cells, and mouse neuroblastoma cells. They bind to a pair of polypeptides of '~120 kD present in crude kinesin prepared from Xenopus eggs and with a single polypeptide of ",,115 kD in extracts from Drosophila embryos. Antibodies raised against kinesin prepared from fruit fly embryos (by W. M. Saxton, Indiana University, Bloomington, IN) and from neural tissues of the squid (by M. P. Sheetz, Washington University, St. Louis, MO) cross react with the mammalian, the fly, and the frog polypeptides. Kinesin antigen was localized in cultured cells by indirect immunofluorescence. PtK, cells in interphase showed dim background staining of cytoplasmic membranous components and bright staining of a small, fibrous, juxtanuclear structure. Double staining with antibodies to microtubules showed that the fibrous object was usually located near the centrosome. On the basis of shape, size, and location, we identify the kinesinpositive structure as a primary cilium. PtK~ cells in mitosis are stained at their poles during all stages of division. The structure stained is approximately spherical, but wisps of faint fluorescence also extend into the body of the spindle. Antibodies to squid or fruit fly kinesin produce identical patterns in PtK~ cells. Controls with preimmune and preabsorbed sera show that the centrosome staining is not due simply to the common tendency of rabbit antisera to stain this structure. Similar centrosome and spindle pole staining was visible when antibodies to bovine brain or squid kinesin were applied to the A6 cell line (kidney epithelial cells from Xenopus laevis). Some possible functions of kinesin localized at the spindle poles are discussed.