In the last decade, Autism has broadened and often shifted its diagnostics criteria, allowing several neuropsychiatric and neurological disorders of known etiology. This has resulted in a highly heterogeneous spectrum with apparent exponential rates in prevalence. I ask if it is possible to leverage existing genetic information about those disorders making up Autism today and use it to stratify this spectrum. To that end, I combine genes linked to Autism in the SFARI database and genomic information from the DisGeNET portal on 25 diseases, inclusive of non-neurological ones. I use the GTEx data on genes’ expression on 54 human tissues and ask if there are overlapping genes across those associated to these diseases and those from SFARI-Autism. I find a compact set of genes across all brain-disorders which express highly in tissues fundamental for somatic-sensory-motor function, self-regulation, memory, and cognition. Then, I offer a new stratification that provides a distance-based orderly clustering into possible Autism subtypes, amenable to design personalized targeted therapies within the framework of Precision Medicine. I conclude that viewing Autism through this physiological (Precision) lens, rather than viewing it exclusively from a psychological behavioral construct, may make it a more manageable condition and dispel the Autism epidemic myth.