The use of RMGIC liner with composite resin restorations reduces microleakage. The silorane-based composite showed lower volumetric polymerization shrinkage than methacrylate-based composites.
SUMMARYAim: To determine the volumetric polymerization shrinkage of four different types of composite resin and to evaluate microleakage of these materials in class II (MOD) cavities with and without a resin-modified glass ionomer cement (RMGIC) liner, in vitro.Materials and Methods: One hundred twentyeight extracted human upper premolar teeth were used. After the teeth were divided into eight groups (n=16), standardized MOD cavities were prepared. Then the teeth were restored with different resin composites (Filtek Supreme XT, Filtek P 60, Filtek Silorane, Filtek Z 250) with and without a RMGIC liner (Vitrebond). The restorations were finished and polished after 24 hours. Following thermocycling, the teeth were immersed in 0.5% basic fuchsin for 24 hours, then midsagitally sectioned in a mesiodistal plane and examined for microleakage using a stereomicroscope. The volumetric polymerization shrinkage of materials was measured using a video imaging device (Acuvol, Bisco, Inc). Data were statistically analyzed with Kruskal-Wallis and MannWhitney U-tests.Results: All teeth showed microleakage, but placement of RMGIC liner reduced microleakage. No statistically significant differences were found in microleakage between the teeth restored without RMGIC liner (p.0.05). Filtek Silorane showed significantly less volumetric polymerization shrinkage than the methacrylate-based composite resins (p,0.05).Conclusion: The use of RMGIC liner with both silorane-and methacrylate-based composite resin restorations resulted in reduced microleakage. The volumetric polymerization