A r t i c l e sThe dog tapeworm E. granulosus is one of a group of medically important parasitic helminths of the family Taeniidae (Platyhelminthes; Cestoda; Cyclophyllidea) that infect at least 50 million people globally 1 . Its life cycle involves two mammals, including an intermediate host, usually a domestic or wild ungulate (humans are accidental intermediate hosts) and a canine-definitive host, such as the domestic dog. The larval (metacestode) stage causes hydatidosis (cystic hydatid disease; cystic echinococcosis), a chronic cyst-forming disease in the intermediate (human) host. Currently, up to 3 million people are infected with E. granulosus 2,3 , and, in some areas, 10% of the population has detectable hydatid cysts by abdominal ultrasound and chest X-ray 4,5 .E. granulosus has no gut, circulatory or respiratory organs. It is monoecious, producing diploid eggs that give rise to ovoid embryos, the oncospheres. Strobilization is a notable feature of cestode biology, whereby proglottids bud distally from the anterior scolex, resulting in the production of tandem reproductive units exhibiting increasing degrees of development. A unique characteristic of the larvae (protoscoleces, PSCs) within the hydatid cyst is an ability to develop bidirectionally into an adult worm in the dog gastrointestinal tract or into a secondary hydatid cyst in the intermediate (human) host, a process triggered by bile acids 6 . Another distinct feature of E. granulosus is its capacity to infect and adapt to a large number of mammalian species as intermediate hosts, which has contributed to its cosmopolitan global distribution.Here we report the sequence and analysis of the E. granulosus genome. Comprising nine pairs of chromosomes 7 , it is one of the first cestode genomes to be sequenced and complements the recent publication by Tsai et al. 8 of a high-quality genome for Echinococcus multilocularis (the cause of alveolar echinococcosis), together with draft genomes of three other tapeworm species including E. granulosus. Our study provides insights into the biology, development, differentiation, evolution and host interaction of E. granulosus and has identified a range of drug and vaccine targets that can facilitate the development of new intervention tools for hydatid treatment and control. Cystic echinococcosis (hydatid disease), caused by the tapeworm E. granulosus, is responsible for considerable human morbidity and mortality. This cosmopolitan disease is difficult to diagnose, treat and control. We present a draft genomic sequence for the worm comprising 151.6 Mb encoding 11,325 genes. Comparisons with the genome sequences from other taxa show that E. granulosus has acquired a spectrum of genes, including the EgAgB family, whose products are secreted by the parasite to interact and redirect host immune responses. We also find that genes in bile salt pathways may control the bidirectional development of E. granulosus, and sequence differences in the calcium channel subunit EgCa v b 1 may be associated with praziquantel sens...