This study is intended to present a computational standard model for combustibles, compartments and buildings. As performance based design is more popular, fire-intensity and fire-load have turned out to be very important factors for building design and can be predicted through some computational work. To predict and estimate the fire properties of a residential fire, we made some numerical models of combustibles, compartments and a residential building. In a bid to validate the estimate values, research was divided into three parts of step verifications. The first was for combustibles, the second was for compartments and the third was for the building. During each step, computational analysis results from numerical models were compared with real fire tests. For computational analysis, the Fire Dynamics Simulator was used with Large Eddy Simulation model for turbulence. Consequently, fire-intensity was well predicted and flash-over of rooms were successfully estimated.