Hemangioblast, a precursor possessing hematopoietic and endothelial potential, is identified as the blast colony-forming cell in the murine gastrulating embryos (E7.0 -E7.5). Whether hemangioblast exists in the somite-stage embryos is unknown, even though hemogenic endothelium is regarded as the precursor of definitive hematopoiesis in the aortagonad-mesonephros (AGM) region. To address the issue, we developed a unique three-step assay of high proliferative potential (HPP) precursors. The AGM region contained a kind of HPP precursor that displayed hematopoietic selfrenewal capacity and was able to differentiate into functional endothelial cells in vitro (i.e., incorporating DiI-acetylated low-density lipoprotein, expressing von Willebrand factors, and forming network structures in Matrigel). The clonal nature was verified by cell mixing assay. However, the bilineage precursor with high proliferative potential-the HPP-hemangioblast (HA)-was not readily detected in the yolk sac (E8.25-E12.5), embryonic circulation (E10.5), placenta (E10.5-E11.5), fetal liver (E11.5-E12.5), and even umbilical artery (E11.5), reflective of its strictly spatial-regulated ontogeny. Expression of CD45, a panhematopoietic marker, distinguished hematopoietic-restricted HPP-colony-forming cell from the bipotential HPP-HA. Finally, we revealed that basic fibroblast growth factor, other than vascular endothelial growth factor or transforming growth factor-1, was a positive modulator of the HPP-HA proliferation. Taken together, the HPP-HA represents a novel model for definitive hemangioblast in the mouse AGM region and will shed light on molecular mechanisms underlying the hemangioblast development.