The pursuit of innovative combinations for the development of novel antimicrobial and antiviral medications has garnered worldwide interest among scientists in recent times. Monosaccharides and their glycosides, such as methyl α-d-mannopyranoside derivatives, play a significant role in the potential treatment of viral respiratory pathologies. This study was undertaken to investigate and assess the synthesis and spectral characterization of methyl α-d-mannopyranoside derivatives 2–6, incorporating various aliphatic and aromatic groups. The investigation encompassed comprehensive in vitro antimicrobial screening, examination of physicochemical properties, molecular docking analysis, molecular dynamics simulations, and pharmacokinetic predictions. A unimolar one-step cinnamoylation reaction was employed under controlled conditions to produce methyl 6-O-cinnamoyl-α-d-mannopyranoside 2, demonstrating selectivity at the C-6 position. This represented a pivotal step in the development of potential antimicrobial derivatives based on methyl α-d-mannopyranoside. Subsequently, four additional methyl 6-O-cinnamoyl-α-d-mannopyranoside derivatives were synthesized with reasonably high yields. The chemical structures of these novel analogs were confirmed through a thorough analysis of their physicochemical properties, elemental composition, and spectroscopic data. In vitro antimicrobial assays were conducted against six bacterial strains and two fungal strains, revealing promising antifungal properties of these methyl α-d-mannopyranoside derivatives in comparison to their antibacterial activity. Moreover, cytotoxicity testing revealed that the compounds are less toxic. Further supporting these findings, molecular docking studies were performed against the H5N1 influenza A virus, indicating significant binding affinities and nonbonding interactions with the target protein 6VMZ. Notably, compounds 4 (−7.2) and 6 (−7.0) exhibited the highest binding affinities. Additionally, a 100 ns molecular dynamics simulation was conducted to assess the stability of the complex formed between the receptor 6VMZ and methyl α-d-mannopyranoside derivatives under in silico physiological conditions. The results revealed a stable conformation and binding pattern within the stimulating environment. In silico pharmacokinetic and toxicity assessments of the synthesized molecules were performed using Osiris software (version 2.9.1). Compounds 4 and 6 demonstrated favorable computational and pharmacological activities, albeit with a low drug score, possibly attributed to their higher molecular weight and irritancy. In conclusion, this study showcases the synthesis and evaluation of methyl α-d-mannopyranoside derivatives as promising candidates for antimicrobial and antifungal agents. Molecular docking and dynamics simulations, along with pharmacological predictions, contribute to our understanding of their potential therapeutic utility, although further research may be warranted to address certain pharmacological aspects.