The annual number of cancer deaths continues increasing every day; thus, it is urgent to search for and find active, selective, and efficient anticancer drugs as soon as possible. Among the available anticancer drugs, almost all of them contain heterocyclic moiety in their chemical structure. Xanthone is a heterocyclic compound with a dibenzo-γ-pyrone framework and well-known to have “privileged structures” for anticancer activities against several cancer cell lines. The wide anticancer activity of xanthones is produced by caspase activation, RNA binding, DNA cross-linking, as well as P-gp, kinase, aromatase, and topoisomerase inhibition. This anticancer activity depends on the type, number, and position of the attached functional groups in the xanthone skeleton. This review discusses the recent advances in the anticancer activity of xanthone derivatives, both from natural products isolation and synthesis methods, as the anticancer agent through in vitro, in vivo, and clinical assays.
A study on the adsorption characteristics of Pb(II) and Cr(III) cations onto C‐4‐methoxyphenylcalix‐[4]resorcinarene (CMPCR) in batch and fixed bed column systems has been conducted. CMPCR was produced by one step synthesis from resorcinol, 4‐methoxybenzaldehyde, and HCl. The synthesis was carried out at 78 °C for 24 hours and afforded the adsorbent in 85.7% as a 3:2 mixture of C4ν:C2ν isomer. Most parameters in batch and fixed bed column systems confirm that CMPCR is a good adsorbent for Pb(II) and Cr(III), though Pb(II) adsorption was more favorable than that of Cr(III). The adsorption kinetic of Pb(II) and Cr(III) adsorptions in batch and fixed bed column systems followed a pseudo 2n order kinetics model. The rate constant of Pb(II) was higher than that of Cr(III) in the batch system, but this result was contrary to the result obtained in a fixed bed column system. Desorption studies to recover the adsorbed Pb(II) and Cr(III) were performed sequentially with distilled water and HCl, and the results showed that the adsorption was dominated by chemisorption.
Abstract-The TCA/ZHY catalyst (Si/Al = 3.25) was prepared by impregnation of the Zeolite HY (Si/Al = 2.89) with amount of an aquous solution of TCA. The physico-chemical properties were investigated by XRD, 29 Si and 27 Al MAS NMR, BET, SEM, NH 3 -TPD and FT-IR spectroscopy of pyridine adsorbed. The activity of catalytic of these catalysts has been carried out over the liquid-phase hydration of α-pinene to give α-terpineol as a major product and hydrocarbon as a minor products.Index Terms-TCA/ZHY, α-pinene, α terpineol, hydration.
Currently, crude oil still remains an irreplaceable energy source for chemical industrial processes, transportation systems, electricity, and other human activities. However, crude oil contains sulfur elements as the major impurities in the form of aliphatic and aromatic organosulfur compounds. During the combustion of fuel, these organosulfur compounds are converted to harmful SOx gases; thus, many countries strictly limit the maximum sulfur content in the fuels. To fulfill the government regulation, refineries are trying to decrease the maximum sulfur content in crude oil through several desulfurization technologies, such as hydrodesulfurization, adsorption, oxidative‐desulfurization, alkylation, and biodesulfurization. Each desulfurization technology has its own advantages and disadvantages. In this review article, we aimed to briefly summarize the progress in the developing science and technology of each desulfurization process of crude oil. Several fields in the desulfurization process are still facing challenges to create better designs and development for a safer future of the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.