Pathogens comprised of viruses, bacteria, gut microbiome, and parasites are a leading cause of ever-emerging diseases in humans. Studying pathogens for their ability to cause diseases is a topic of critical discussion among scientists and pharmaceutical centers for effective drug development that diagnose, treat, and prevent infection-associated disorders. Pathogens impact health either directly by invading the host or by eliciting an acute inflammatory immune response. This paradigm of inflammatory immune responses is even more consequential in people who may be immunocompromised. In this regard, pregnancy offers an altered immunity scenario, which may allow the onset of severe diseases. Viruses, such as Influenza, HIV, and now SARS-CoV-2, associated with the COVID-19 pandemic, raise new concerns for maternal and fetal/neonatal health. Intrauterine bacterial and parasitic infections are also known to impact pregnancy outcomes and neonatal health. More importantly, viral and bacterial infections during pregnancy have been identified as a common contributor to fetal brain development defects. Infection-mediated inflammatory uterine immune milieu is thought to be the main trigger for causing poor fetal brain development, resulting in long-term cognitive impairments. The concept of in utero programming of childhood and adult disorders has revolutionized the field of neurodevelopment and its associated complications. Recent findings in mice and humans clearly support the idea that uterine immunity during pregnancy controls the health trajectory of the child and considerably influences the cognitive function and mental health. In this review, we focus on the in utero programming of autism spectrum disorders (ASD) and assess the effects of pathogens on the onset of ASD-like symptoms.