phenotypic plasticity is one of the most important strategies used by organisms with low mobility to survive in fluctuating environments. Phenotypic plasticity plays a vital role in nematodes because they have small bodies and lack wings or legs and thus, cannot move far by themselves. Bursaphelenchus xylophilus, the pathogenic nematode species that causes pine wilt disease, experiences fluctuating conditions throughout their life history; i.e., in both the phytophagous and mycetophagous phases. However, whether the functional morphology changes between the life phases of B. xylophilus remains unknown. Our study revealed differences in the ultrastructure of B. xylophilus between the two phases. Well-developed lateral alae and atrophied intestinal microvilli were observed in the phytophagous phase compared with the mycetophagous phase. The ultrastructure in the phytophagous phase was morphologically similar to that at the dauer stage, which enables the larvae to survive in harsh environments. It suggests that the living tree represents a harsh environment for B. xylophilus, and ultrastructural phenotypic plasticity is a key strategy for B. xylophilus to survive in a living tree. In addition, ultrastructural observations of obligate plant-parasitic species closely related to B. xylophilus revealed that B. xylophilus may be in the process of adapting to feed on plant cells. Many environments are heterogeneous and change continuously. Most highly mobile organisms are able to move around to find optimal or better habitats. For example, winged insects or birds can fly away from environments that become unfavorable on a seasonal basis. Mobile animals can migrate into a new environment for feeding and/or reproduction. On the other hand, low mobility or sessile organisms cannot escape from their habitat when it becomes unfavorable and often alter their phenotype to adapt to their changing habitat. This ability of a single individual to develop more than one phenotype is termed "phenotypic plasticity. " Phenotypic plasticity plays a key role in the survival and propagation of certain organisms 1,2 in nature where large environmental fluctuations occur and could be one driver of evolution through the initiation of adaptive divergence, i.e., "plasticity-first" evolution 3. Phenotypic plasticity is well-studied in plants. Plants are sessile and cannot move even if the environment becomes unfavorable, making plasticity very important for their survival 4 ; plants can recognize changes in their environment and alter their forms to adapt without moving. As an example, plant leaves are particularly plastic and exhibit great diversity in shape, size, and color in nature. Environmental factors, such as temperature, light quality and intensity, and humidity, all affect leaf morphology 5-7. Phenotypic plasticity has also been reported in many animals. Many clones of Daphnia pulex develop thorns as antipredator devices in the presence of chemical signals from predators such as the insect Chaoborus americanus, and clones of D. pulex ha...