Soil microorganisms play a vital role in increasing the availability of phosphorus (P) for plants through mineralization of organic P and solubilization of precipitated P compounds. In this two-year study, we analyzed several P-solubilizing microorganisms (PSMs) of the genus Bacillus and their consortiums for the ability to release soluble P from apatite concentrates of various grinding degrees using ryegrass (Lolium multiflorum Lam.) as a model plant. The effects were accessed by analyzing plant growth and nutrient assimilation. The greatest effect on root system development and plant biomass accumulation (dry weight) was observed for the apatite concentrate of standard grinding in combination with Bacillus megaterium BI14 and Bacillus subtilis BI2 and Bacillus velezensis BS89 strains. Although the introduction of apatite concentrates led to an increase in the content of total strontium in soil, the levels of strontium did not exceed the maximum allowable concentration, and the accumulation of mobile strontium by plants was unchanged; importantly, the use of tested PSMs led to a decrease in the strontium content in the green biomass of ryegrass. Our results indicate that biologized apatite concentrates in combination with PSMs represent promising fertilizers that can provide a source of soluble P to be readily assimilated by plants.