Background:
Microelectrode recordings (MERs) are used during deep brain stimulation surgery (DBS) to optimize patient outcomes and provide a unique method of collecting data regarding neurological conditions. However, MERs can be affected by anesthetics such as dexmedetomidine. Little is known about the effects of dexmedetomidine (DEX) on the globus pallidus interna (GPi), a common target for DBS. The primary aim of this study is to investigate the hypothesis that DEX is associated with alterations in GPi MERs.
Methods:
We conducted a retrospective analysis comparing MERs from patients with Parkinson’s disease (PD) and dystonia who underwent insertion of DBS of the GPi under DEX sedation with those who went through the same procedure without DEX (No DEX).
Results:
Firing rates for GPi neurons in the DEX group were lower (57.44 ± 2.04; mean ± SEM, n = 163 cells) than the No DEX group (69.53 ± 2.06, n = 112 cells, P < 0.0001). Overall, DEX was associated with a greater proportion of GPi cells classified as firing in bursty pattern compared to our No DEX group. (29.41%, n = 153 vs 14.81%, n = 108, P = 0.008). This effect was present for both PD and dystonia patients who underwent the procedure. High doses of DEX were associated with lower firing rates than low doses.
Conclusions:
Our results suggest that DEX is associated with a decrease in GPi firing rates and are associated with an increase in burstiness. Furthermore, these effects are similar between dystonia and PD patients. Lastly, the effects of DEX may differ between high doses and low doses.