A s the primary conduit for CO 2 and heat exchange between the atmosphere and the deep ocean, the Southern Ocean is an important part of the climate system. Approximately 40% of the ocean's inventory of anthropogenic carbon entered through the air-sea interface south of 40°S (Khatiwala et al. 2009), and the region will continue to serve as an important carbon sink into the future (Ito et al. 2015). Despite its importance, the processes controlling air-sea gas exchange in the Southern Ocean are poorly represented by models. This was highlighted in a recent comparison of models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), wherein the simulated seasonal cycles of air-sea CO 2 exchange with the Southern Ocean were widely divergent and in poor agreement with observational estimates (Anav et al. 2013;Jiang et al. 2014), suggesting possible model biases in the timing, spatial A recent Southern Ocean airborne campaign collected continuous, discrete, and remote sensing measurements to investigate biogeochemical and physical processes driving air-sea exchange of CO 2 , O 2 , and reactive biogenic gases.