This article (1) reviews and clarifies the basic physics underpinning finescale parameterizations of turbulent dissipation due to internal wave breaking and (2) provides advice on the implementation of the parameterizations in a way that is most consistent with the underlying physics, with due consideration given to common instrumental issues. Potential biases in the parameterization results are discussed in light of both (1) and (2), and illustrated with examples in the literature. The value of finescale parameterizations for studies of the large-scale ocean circulation in the presence of common biases is assessed. We conclude that the parameterizations can contribute significantly to the resolution of large-scale circulation problems associated with plausible ranges in the rates of turbulent dissipation and diapycnal mixing spanning an order of magnitude or more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.