The TOR kinase pathway is central in modulating aging in a variety of animal models. The target of rapamycin (TOR) integrates a complex network of signals from growth conditions, nutrient availability, energy status, and physiological stresses and matches an organism’s growth rate to the resource environment. Important problems remaining are to identify the pathways that interact with TOR and characterize them as additive or synergistic. One of the most versatile stress sensors in metazoans is the Jun-N-terminal Kinase (JNK) signalling pathway. JNK is an evolutionarily conserved stress-activated protein kinase that is induced by a range of stressors, including UV irradiation, reactive oxygen species, DNA damage, heat, and bacterial antigens. JNK is thought to interact with the TOR pathway, but its effects on TOR are poorly understood. We used the rotifer Brachionus manjavacas as a model animal to probe the regulation of TOR and JNK pathways and explore their interaction. The effect of various chemical inhibitors was examined in life table and stressor challenge experiments. A survey of 12 inhibitors revealed two, rapamycin and JNK inhibitor, that significantly extended lifespan of B. manjavacas. At 1 μM concentration, exposure to rapamycin or JNK inhibitor extended mean rotifer lifespan by 35% and maximum lifespan by 37%. Exposure to both rapamycin and JNK inhibitor simultaneously extended mean rotifer lifespan 65% more than either alone. Exposure to a combination of rapamycin and JNK inhibitors conveyed greater protection to starvation, UV and osmotic stress than either inhibitor alone. RNAi knockdown of TOR and JNK gene expression was investigated for its ability to extend rotifer lifespan. RNAi knockdown of the TOR gene resulted in 29% extension of mean lifespan compared to control and knockdown of the JNK gene resulted in 51% mean lifespan extension. In addition to lifespan, we quantified mitochondria activity using the fluorescent marker Mitotracker and lysosome activity using Lysotracker. Treatment of rotifers with JNK inhibitor enhanced mitochondria activity nearly 3-fold, whereas rapamycin treatment had no significant effect. Treatment of rotifers with rapamycin or JNK inhibitor reduced lysosome activity in 1, 3 and 8 day old animals, but treatment with both inhibitors did not produce any additive effect. We conclude that inhibition of TOR and JNK pathways significantly extends the lifespan of B. manjavacas. These pathways interact so that inhibition of both simultaneously acts additively to extend rotifer lifespan more than inhibition of either alone.