Abstract:Beef semimembranosus exhibits intramuscular difference in color stability, and the inside region (ISM) of the muscle is color-labile, whereas the outside region (OSM) is color-stable. Variations in sarcoplasmic proteins are known to contribute to this intramuscular color difference. Sarcoplasmic proteome and beef color are affected by postmortem aging. The objective of the present study was to examine the effect of aging on intramuscular color variations and the sarcoplasmic proteome of beef semimembranosus. Semimembranosus muscles obtained from 8 beef carcasses (n = 8) were subjected to aging at 2°C for 0, 7, 14, and 21 d. On each aging day, the muscles were fabricated into ISM and OSM steaks and allotted to refrigerated storage (2°C) under aerobic packaging. Instrumental color and metmyoglobin reducing activity were evaluated on d 0, 3, and 6 of storage. Samples frozen on d 0 and d 21 of aging were utilized for sarcoplasmic proteome analysis. Color attributes of both ISM and OSM steaks were influenced by aging, with steaks aged for 21 d having the lowest (P < 0.05) color stability. The ISM steaks had greater (P < 0.05) lightness than OSM counterparts, and the difference in lightness was not negated by aging. The ISM and OSM had similar (P > 0.05) redness on d 0 of storage, whereas ISM had lower (P < 0.05) redness compared to OSM on d 3 and d 6 of storage. Several proteins associated with glycolysis and energy metabolism were of greater abundance (P < 0.05) in OSM than in ISM after 21-d aging. Furthermore, the influence of 21-d aging on sarcoplasmic proteome was observed at a greater extent in OSM than in ISM, indicating that the effect of aging on sarcoplasmic proteome of beef semimembranosus was influenced by the location within the muscle.