The excited state properties of protonated ortho (2-), meta (3-), and para (4-) aminopyridine molecules have been investigated through UV photofragmentation spectroscopy and excited state coupled-cluster CC2 calculations. Cryogenic ion spectroscopy allows recording well-resolved vibronic spectroscopy that can be reproduced through Franck−Condon simulations of the ππ* local minimum of the excited state potential energy surface. The excited state lifetimes have also been measured through a pump−probe excitation scheme and compared to the estimated radiative lifetimes. Although protonated aminopyridines are rather simple aromatic molecules, their deactivation mechanisms are indeed quite complex with unexpected results. In protonated 3-and 4-aminopyridine, the fragmentation yield is negligible around the band origin, which implies the absence of internal conversion to the ground state. Besides, a twisted intramolecular charge transfer reaction is evidenced in protonated 4-aminopyridine around the band origin, while excited state proton transfer from the pyridinic nitrogen to the adjacent carbon atom opens with roughly 500 cm −1 of excess energy.