Compact metal probes: A solution for atomic force microscopy based tip-enhanced Raman spectroscopy Rev. Sci. Instrum. 83, 123708 (2012) Note: Radiofrequency scanning probe microscopy using vertically oriented cantilevers Rev. Sci. Instrum. 83, 126103 (2012) Switching spectroscopic measurement of surface potentials on ferroelectric surfaces via an open-loop Kelvin probe force microscopy method Appl. Phys. Lett. 101, 242906 (2012) Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid J. Appl. Phys. 112, 114324 (2012) Invited Review Article: High-speed flexure-guided nanopositioning: Mechanical design and control issues Rev. Sci. Instrum. 83, 121101 (2012) Additional information on Rev. Sci. Instrum. The spring constant of an atomic force microscope cantilever is often needed for quantitative measurements. The calibration method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] for a rectangular cantilever requires measurement of the resonant frequency and quality factor in fluid (typically air), and knowledge of its plan view dimensions. This intrinsically uses the hydrodynamic function for a cantilever of rectangular plan view geometry. Here, we present hydrodynamic functions for a series of irregular and non-rectangular atomic force microscope cantilevers that are commonly used in practice. Cantilever geometries of arrow shape, small aspect ratio rectangular, quasi-rectangular, irregular rectangular, non-ideal trapezoidal cross sections, and V-shape are all studied. This enables the spring constants of all these cantilevers to be accurately and routinely determined through measurement of their resonant frequency and quality factor in fluid (such as air). An approximate formulation of the hydrodynamic function for microcantilevers of arbitrary geometry is also proposed. Implementation of the method and its performance in the presence of uncertainties and non-idealities is discussed, together with conversion factors for the static and dynamic spring constants of these cantilevers. These results are expected to be of particular value to the design and application of micro-and nanomechanical systems in general.
An ion mobility mass spectrometry apparatus for investigating the photoisomerization and photodissociation of electrosprayed molecular ions in the gas phase is described. The device consists of a drift tube mobility spectrometer, with access for a laser beam that intercepts the drifting ion packet either coaxially or transversely, followed by a quadrupole mass filter. An ion gate halfway along the drift region allows the instrument to be used as a tandem ion mobility spectrometer, enabling mobility selection of ions prior to irradiation, with the photoisomer ions being separated over the second half of the drift tube. The utility of the device is illustrated with photoisomerization and photodissociation action spectra of carbocyanine molecular cations. The mobility resolution of the device for singly charged ions is typically 80 and it has a mass range of 100-440 Da, with the lower limit determined by the drive frequency for the ion funnels, and the upper limit by the quadrupole mass filter.
A new approach for studying the photoisomerization of molecular ions in the gas phase is described. Packets of molecular ions are injected into a drift tube filled with helium buffer gas, where they are irradiated with tunable laser light. Photoisomerization changes the ions' cross section for collisions with helium atoms so that they arrive at the ion detector slightly earlier or later than the parent ions. By monitoring the photo-isomer peak as a function of laser wavelength one can record an action spectrum that is related to the ions' absorption spectrum modulated by the photoisomerization probability. The approach is demonstrated using the polymethine dye HITC (1,3,3,1',3',3'-hexamethylindotricarbocyanine). The data show that both trans and cis forms of HITC(+) exist in the gas phase with trans→cis photoisomerization predominating over the 550-710 nm range and cis→trans photoisomerization occurring over the 735-770 nm range. The gas-phase photoisomerization action spectrum is comparable to the absorption spectra of trans HITC and cis HTIC in the condensed phase, but with the absorption peaks shifted to shorter wavelength. The gas-phase photoisomerization action spectrum of the (HITC)2(2+) dication dimer is also reported. (HITC)2(2+) cations photoisomerize over the 550-770 nm range to form more compact structures.
Laser spectroscopy and ion mobility spectrometry are combined to provide structural and photochemical information on photoisomerizing molecules in the gas phase. The strategy exploits the fact that an ion packet propelled through buffer gas by an electric field separates spatially and temporally into its constituent isomers because of small differences in their collision cross sections. Isomers selected by an electrostatic ion gate are exposed to wavelength tunable radiation, promoting formation of photoisomers that are separated in a second ion mobility stage. The approach is demonstrated for protonated merocyanine and spiropyran isomers formed through electrospray ionization. Four isomers are observed whose relative abundances depend on pretreatment of the electrosprayed solution with either ultraviolet or visible light, and on collisional excitation before the ions are launched into the drift tube. The observations are interpreted in the light of accurate double-hybrid density functional theory calculations for the protonated spiropyran and merocyanine isomers that are used to predict structures, relative energies, isomerization barriers, collision cross sections and electronic absorption spectra. The two most abundant isomers, are merocyanine forms, in which the proton resides on the quinone oxygen atom, with either a trans or cis central bond in the linking polymethine chain. These two mero forms can be interconverted through photoexcitation, with different wavelength dependences for the forward and reverse photoisomerization processes. Protonated spiropyran is formed from protonated merocyanine isomers through collisional activation, but in only minor amounts through their photo-excitation over the 300-700 nm range.
This paper provides experimental evidence for the chemical structures of aliphatically substituted and aliphatically bridged polycyclic aromatic hydrocarbon (PAH) species in the gasphase of combustion environments. The identification of these single-and multi-core aromatic species, which have been hypothesized to be important in PAH growth and soot nucleation, was made possible through a combination of sampling gaseous constituents from an atmospheric pressure inverse co-flow diffusion flame of ethylene and high-resolution tandem mass spectrometry (MS-MS). In these experiments, the flame-sampled components were ionized using a continuous VUV lamp at 10.0 eV and the ions were subsequently fragmented through collisions with Ar atoms in a collision-induced dissociation (CID) process. The resulting fragment ions, which were separated using a reflectron time-of-flight mass spectrometer, were used to extract structural information about the sampled aromatic compounds. The high-resolution mass spectra revealed the presence of alkylated single-core aromatic compounds and the fragment ions that were observed correspond to the loss of saturated and unsaturated units containing up to a total of 6 carbon atoms. Furthermore, the aromatic structures that form the foundational building blocks of the larger PAHs were identified to be smaller single-ring and pericondensed aromatic species with repetitive structural features. For demonstrative purposes, details are provided for the CID of molecular ions at masses 202 and 434. Insights into the role of the aliphatically substituted and bridged aromatics in the reaction network of PAH growth chemistry were obtained from spatially resolved measurements of the flame. The experimental results are consistent with a growth mechanism in which alkylated aromatics are oxidized to form pericondensed ring structures or react and recombine with other aromatics to form larger, potentially three-dimensional, aliphatically bridged multi-core aromatic hydrocarbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.