2021
DOI: 10.1017/etds.2021.96
|View full text |Cite
|
Sign up to set email alerts
|

Chaotic behavior of the p-adic Potts–Bethe mapping II

Abstract: The renormalization group method has been developed to investigate p-adic q-state Potts models on the Cayley tree of order k. This method is closely related to the examination of dynamical behavior of the p-adic Potts–Bethe mapping which depends on the parameters q, k. In Mukhamedov and Khakimov [Chaotic behavior of the p-adic Potts–Behte mapping. Discrete Contin. Dyn. Syst.38 (2018), 231–245], we have considered the case when q is not divisible by p and, under some conditions, it was established that the mapp… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
2
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 9 publications
(7 citation statements)
references
References 43 publications
0
2
0
Order By: Relevance
“…Следует отметить, что динамическое поведение отображения (4.3) ранее уже изучалось в литературе (см. [18], [35], [36], [39], [40]). Рассмотрим случай k = 3 и предположим, что |A| = 1.…”
Section: P-адических мер гиббсаunclassified
See 2 more Smart Citations
“…Следует отметить, что динамическое поведение отображения (4.3) ранее уже изучалось в литературе (см. [18], [35], [36], [39], [40]). Рассмотрим случай k = 3 и предположим, что |A| = 1.…”
Section: P-адических мер гиббсаunclassified
“…Замечание 4.1. Теорема 4.1 согласуется с описанием обобщенных трансляционно-инвариантных p-адических мер Гиббса, ранее полученным в [18], [35], [36], для случаев 0…”
Section: P-адических мер гиббсаunclassified
See 1 more Smart Citation
“…By its turn, p-adic numbers (simply put, the decomposition of an integer as a power series of a prime p, see next sections) are very useful technical tools in different areas of physics as quantum mechanics [15,16], quantum logic [17], gravity [18], and string theory [19]. Further, they have been employed in the study of stochastic and complex systems, like in self-organized criticality (SOC) [20], phase transitions in Ising [21,22] and Potts [23][24][25][26] models, as well as in Gibbs measures [21,27,28], Markov processes [29], and diffusion in random media [30]. For a complete review on p-adics usages see, e.g.…”
Section: Introductionmentioning
confidence: 99%
“…First, p$$ p $$‐adic lattice models have been appeared in the literature [24–28] to investigate phase transition issues of certain p$$ p $$‐adic models over Cayley trees (see Mukhamedov and Khakimov [23] for recent review). In previous works [29–36], using chaotic behavior of the p$$ p $$‐adic renormalization group (dynamical systems approach) technique, it has been established vastness of the set of p$$ p $$‐adic Gibbs measures for the Potts models on a Cayley tree. Recently, in Rozikov [37], a comprehensive treatment with applications of the Potts model has been presented.…”
Section: Introductionmentioning
confidence: 99%