Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Gravitational search algorithm (GSA) inspired from physics emulates gravitational forces to guide particles' search. It has been successfully applied to diverse optimization problems. However, its search performance is limited by its inherent mechanism where gravitational constant plays an important role in gravitational forces among particles. To improve it, this paper uses chaotic neural oscillators to adjust its gravitational constant, named GSA-CNO. Chaotic neural oscillators can generate various chaotic states according to their parameter settings. Thus, we select four kinds of chaotic neural oscillators to form distinctive chaotic characteristics. Experimental results show that chaotic neural oscillators effectively tune the gravitational constant such that GSA-CNO has good performance and stability against four GSA variants on functions. Three real-world optimization problems demonstrate the promising practicality of GSA-CNO.
Gravitational search algorithm (GSA) inspired from physics emulates gravitational forces to guide particles' search. It has been successfully applied to diverse optimization problems. However, its search performance is limited by its inherent mechanism where gravitational constant plays an important role in gravitational forces among particles. To improve it, this paper uses chaotic neural oscillators to adjust its gravitational constant, named GSA-CNO. Chaotic neural oscillators can generate various chaotic states according to their parameter settings. Thus, we select four kinds of chaotic neural oscillators to form distinctive chaotic characteristics. Experimental results show that chaotic neural oscillators effectively tune the gravitational constant such that GSA-CNO has good performance and stability against four GSA variants on functions. Three real-world optimization problems demonstrate the promising practicality of GSA-CNO.
High-frequency trading is a method of intervention on the financial markets that uses sophisticated software tools, and sometimes also hardware, with which to implement high-frequency negotiations, guided by mathematical algorithms, that act on markets for shares, options, bonds, derivative instruments, commodities, and so on. HFT strategies have reached considerable volumes of commercial traffic, so much so that it is estimated that they are responsible for most of the transaction traffic of some stock exchanges, with percentages that, in some cases, exceed 70% of the total. One of the main issues of the HFT systems is the prediction of the medium-short term trend. For this reason, many algorithms have been proposed in literature. The author proposes in this work the use of an algorithm based both on supervised Deep Learning and on a Reinforcement Learning algorithm for forecasting the short-term trend in the currency FOREX (FOReign EXchange) market to maximize the return on investment in an HFT algorithm. With an average accuracy of about 85%, the proposed algorithm is able to predict the medium-short term trend of a currency cross based on the historical trend of this and by means of correlation data with other currency crosses using techniques known in the financial field with the term arbitrage. The final part of the proposed pipeline includes a grid trading engine which, based on the aforementioned trend predictions, will perform high frequency operations in order to maximize profit and minimize drawdown. The trading system has been validated over several financial years and on the EUR/USD cross confirming the high performance in terms of Return of Investment (98.23%) in addition to a reduced drawdown (15.97 %) which confirms its financial sustainability.
The analysis of financial data represents a challenge that researchers had to deal with. The rethinking of the basis of financial markets has led to an urgent demand for developing innovative models to understand financial assets. In the past few decades, researchers have proposed several systems based on traditional approaches, such as autoregressive integrated moving average (ARIMA) and the exponential smoothing model, in order to devise an accurate data representation. Despite their efficacy, the existing works face some drawbacks due to poor performance when managing a large amount of data with intrinsic complexity, high dimensionality and casual dynamicity. Furthermore, these approaches are not suitable for understanding hidden relationships (dependencies) between data. This paper proposes a review of some of the most significant works providing an exhaustive overview of recent machine learning (ML) techniques in the field of quantitative finance showing that these methods outperform traditional approaches. Finally, the paper also presents comparative studies about the effectiveness of several ML-based systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.