The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and non-coding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains and updates the GO knowledgebase. The GO knowledgebase consists of three components: 1) the Gene Ontology – a computational knowledge structure describing functional characteristics of genes; 2) GO annotations – evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and 3) GO Causal Activity Models (GO-CAMs) – mechanistic models of molecular “pathways” (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised and updated in response to newly published discoveries, and receives extensive QA checks, reviews and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, as well as guidance on how users can best make use of the data we provide. We conclude with future directions for the project.
Seed development and nitrogen (N) storage depend on delivery of amino acids to seed sinks. For efficient translocation to seeds, amino acids are loaded into the phloem in source leaves and along the long distance transport pathway through xylem-phloem transfer. We demonstrate that Arabidopsis thaliana AMINO ACID PERMEASE2 (AAP2) localizes to the phloem throughout the plant. AAP2 T-DNA insertion lines showed changes in source-sink translocation of amino acids and a decrease in the amount of seed total N and storage proteins, supporting AAP2 function in phloem loading and amino acid distribution to the embryo. Interestingly, in aap2 seeds, total carbon (C) levels were unchanged, while fatty acid levels were elevated. Moreover, branch and silique numbers per plant and seed yield were strongly increased. This suggests changes in N and C delivery to sinks and subsequent modulations of sink development and seed metabolism. This is supported by tracer experiments, expression studies of genes of N/C transport and metabolism in source and sink, and by phenotypic and metabolite analyses of aap2 plants. Thus, AAP2 is key for xylem to phloem transfer and sink N and C supply; moreover, modifications of N allocation can positively affect C assimilation and source-sink transport and benefit sink development and oil yield.
In vertebrates, intercellular communication via gap junctions is mediated by the connexin family of molecules, which is made up of at least 13 members (reviewed in Ref. 1). These proteins, which have four transmembrane domains and intracellular C-and N-termini, oligomerize to form hemichannels. Oligomers in the adjacent membranes of two closely apposed cells 'dock' to form intercellular channels, through which ions and small molecules move.
The relationship of age to job satisfaction was investigated. Subjects were 1707 public employees in the United States who responded to questionnaires. The results showed that job satisfaction increased with age. Younger employees were less satisfied overall with their jobs, but especially with the intrinsic characteristics of the work. Older employees were more satisfied with the extrinsic characteristics than were the two younger groups of employees. When the effects of salary, job tenure, and education were removed independently as well as simultaneously, the same differences were found. However, when the effect of job characteristics was added to the combination and partialled out, the intrinsic characteristics factor was no longer significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.