Optimal maturation of oocytes and successful development of preimplantation embryos is essential for reproduction. We performed DNA microarray analyses of ovarian transcripts and identified glial cell line-derived neurotrophic factor (GDNF) secreted by cumulus, granulosa, and theca cells as an ovarian factor stimulated by the preovulatory LH/hCG surge. Treatment of cumulus-oocyte complexes with GDNF enhanced first polar body extrusion with increase in cyclin B1 synthesis and the GDNF actions are likely mediated by its receptor GDNF family receptor-alpha1 (GFRA1) and a co-receptor ret proto-oncogene (Ret), both expressed in oocytes. However, treatment with GDNF did not affect germinal vesicle breakdown and cytoplasmic maturation of oocytes. During the preimplantation stages, GDNF was expressed in pregnant oviducts and uteri, whereas GFRA1 and Ret were expressed in embryos throughout early development with an increase after the early blastocyst stage. In blastocysts, both GDNF and GFRA1 were exclusively localized in trophectoderm cells, whereas Ret was detected in both cell lineages. Treatment with GDNF promoted the development of two-cell-stage embryos into blastocysts showing increased cell proliferation and decreased apoptosis mainly in trophectoderm cells. Our findings suggest potential paracrine roles of GDNF in the promotion of completion of meiosis I and the development of early embryos.