Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. licence. www.econstor.eu Please send questions and/or remarks of nonscientific nature to driessen@tinbergen.nl.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicatedMost TI discussion papers can be downloaded at http://www.tinbergen.nl.
The Construction and Interpretation of Combined Cross-Section and Time-Series Inequality Datasets
Joseph F. Francois Tinbergen Institute (Erasmus University Rotterdam) and CEPR
Hugo Rojas-Romagosa Tinbergen Institute (Erasmus University Rotterdam)
August 2005Abstract: The inequality dataset compiled in the 1990s by the World Bank and extended by the UN has been both widely used and strongly criticized. The criticisms raise questions about conclusions drawn from secondary inequality datasets in general. We develop techniques to deal with national and international comparability problems intrinsic to such datasets. The result is a new dataset of consistent inequality series, allowing us to explore problems of measurement error. In addition, the new data allow us to perform parametric non-linear estimation of Lorenz curves from grouped data. This in turn allows us to estimate the entire income distribution, computing alternative inequality indexes and poverty estimates. Finally, we have used our broadly comparable dataset to examine international patterns of inequality and poverty.Keywords: Income distribution datasets, inequality trends, Lorenz curve estimation, poverty estimation JEL codes: D31, C80, O15We acknowledge support from the EU research and training network (RTN) "Trade, Industrialization, and Development," as well as research support from DFID and the World Bank. All errors are of course our own.Address correspondence to: J. Francois, Tinbergen Institute, Erasmus University Rotterdam, Burg Oudlaan 50-H8-18, 3000DR Rotterdam, NETHERLANDS. Email: francois@few.eur.nl. Data are available at www.intereconomics.com/francois/data.html.
OverviewThere is a sizeable literature regarding the interaction between income inequality and other economic variables, such as growth, poverty, trade and ...