International audienceWe examine the statistical performance of inequality indices in the presence of extreme values in the data and show that these indices are very sensitive to the properties of the income distribution. Estimation and inference can be dramatically affected, especially when the tail of the income distribution is heavy, even when standard bootstrap methods are employed. However, use of appropriate semiparametric methods for modelling the upper tail can greatly improve the performance of even those inequality indices that are normally considered particularly sensitive to extreme values
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. This content downloaded from 128.235.251.160 on Wed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.