Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
17–7 PH stainless steel is a highly versatile material with a multitude of applications in a diverse range of fields, including aerospace, chemistry and petrochemistry, and medicine. The material’s exceptional mechanical properties and corrosion resistance render it the optimal selection for numerous components and instruments. Nevertheless, the surface properties of 17–7 PH stainless steel are inadequate for applications requiring high hardness and wear resistance in certain extreme environments. Due to its excellent mechanical properties and corrosion resistance, it can be utilized in the manufacturing of pharmaceutical equipment components. However, certain specialized environments still require surface nitriding treatment. Considering the complex heat treatment process required for this material, this paper reports a detailed study of the surface performance changes of 17–7 PH steel before and after ion nitriding following aging heat treatment. The study employs rolled 17–7 PH stainless steel as the subject material. The impact of heat treatment on plasma nitriding of stainless steel is investigated by comparing and analyzing the influence of martensite content and dislocation density within the martensite of the material prior to and following heat treatment on the hardness, thickness, and corrosion resistance of the nitrided layer on the surface of the steel after nitriding. The results demonstrate that 17–7 PH stainless steel, which does not undergo heat treatment, exhibits a high internal dislocation density, a high nitriding efficiency, and consequently, a high surface hardness. Following the application of a heat treatment, there is an increase in the martensite content of 17–7 PH stainless steel, a decrease in the dislocation content, and an increase in the matrix hardness.
17–7 PH stainless steel is a highly versatile material with a multitude of applications in a diverse range of fields, including aerospace, chemistry and petrochemistry, and medicine. The material’s exceptional mechanical properties and corrosion resistance render it the optimal selection for numerous components and instruments. Nevertheless, the surface properties of 17–7 PH stainless steel are inadequate for applications requiring high hardness and wear resistance in certain extreme environments. Due to its excellent mechanical properties and corrosion resistance, it can be utilized in the manufacturing of pharmaceutical equipment components. However, certain specialized environments still require surface nitriding treatment. Considering the complex heat treatment process required for this material, this paper reports a detailed study of the surface performance changes of 17–7 PH steel before and after ion nitriding following aging heat treatment. The study employs rolled 17–7 PH stainless steel as the subject material. The impact of heat treatment on plasma nitriding of stainless steel is investigated by comparing and analyzing the influence of martensite content and dislocation density within the martensite of the material prior to and following heat treatment on the hardness, thickness, and corrosion resistance of the nitrided layer on the surface of the steel after nitriding. The results demonstrate that 17–7 PH stainless steel, which does not undergo heat treatment, exhibits a high internal dislocation density, a high nitriding efficiency, and consequently, a high surface hardness. Following the application of a heat treatment, there is an increase in the martensite content of 17–7 PH stainless steel, a decrease in the dislocation content, and an increase in the matrix hardness.
Compressor valve spring failure and rapid fracture occurred in a petrochemical enterprise. To find the cause of the failure, and to ensure the safe, stable, and continuous operation of the device, the failure of the spring is analyzed. In this paper, through the macro inspection, chemical composition analysis, metallographic analysis, scanning electron microscopy analysis, energy spectrum analysis, hardness analysis, and other tests, it is concluded that the main reason for the spring fracture is the fatigue fracture caused by unqualified materials. Suggestions are given to avoid similar problems in the future, and it is hoped that this failure analysis will provide valuable experience for similar failure problems in petrochemical enterprises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.