Air exchange through a porous medium depends partly on a pressure gradient induced in it, i.e., air-flow conditions of the outer air. Consequently, response of diffusion-type detectors to radon and thoron may vary with air-flow conditions surrounding the detectors. This effect may be significant for thoron measurement because thoron has a shorter half-life than radon. The present study examined response of diffusion-type detectors (RADUETs and one AlphaGUARD) to thoron with respect to wind speed using a thoron calibration chamber. Response of RADUETs to thoron increased with wind speed. Response of the AlphaGUARD increased with wind speed, but it became constant at a high wind speed. Different response trends to thoron between the RADUETs and the AlphaGUARD could be qualitatively explained by flow states induced by the pressure gradient in the filter or the sponge of these detectors. For RADUETs, laminar (Darcy) flow was induced in the sponge in the examined wind speed range, which meant that thoron entry into the detector increased with wind speed. For the AlphaGUARD, laminar flow was induced in the filter in the low wind speed range, whereas flow was changed to turbulent (non-Darcy) flow at a high wind speed for which thoron entry into the detector did not depend on wind speed.