The stability and robustness of lightly and highly doped poly-Si resistors were evaluated. These resistors exhibited distinct electrical resistance properties and temperature dependences, which can be explained through the grain and grain boundary conduction mechanisms. The resistance shift saturated under the low current stress condition, but continued to increase under the high current stress condition. A novel carrier trapping density model was proposed to explain this behavior. A generalized free energy model that considered stress temperature and stress current dependences was proposed to account for the stability lifetime of a poly-Si resistor based on the resistance shift criterion. Robustness evaluation with transmission line pulse test revealed that the breakdown current exhibited a pulse width dependence which was further explained by a thermal- conduction energy model.