Ionic polymer polymer composites (IP2Cs) are all-organic electroactive polymers (EAPs) that show sensing and actuation capabilities when a deformation or a voltage is applied, respectively. They are fabricated starting from an ionic polymer coated on both sides with a conducting polymer as electrode element. In this work, poly(3,4-ethylendioxytiophene)–poly-(styrenesulfonate) (PEDOT/PSS) has been polymerized directly on Nafion®117 membrane and devices have been manufactured varying the polymerization time. Water and ethylene glycol (EG) have been used as solvents. The obtained IP2Cs have been characterized using thermal and mechanical analyses and electromechanically tested. The results have shown that in IP2Cs manufactured by polymerization in situ the PEDOT/PSS layer adheres very strongly on the Nafion®117 film, improving the possibility of rehydrating the devices after use. Moreover, taking into account that the different polymerization times influence the uniformity of the surface of the organic electrode and, consequently, both device stiffness and electrode conductivity, the structure–property relationships of the obtained devices have been investigated. The influence of the different solvents inside the devices has also been studied when IP2Cs have been used as actuators or sensors. Reported results show that it is possible to modulate the performances of IP2Cs by varying some manufacture parameters and the solvent.