Effect of multi-tree handling and tree-size on harvester performance in small-diameter hardwood thinnings Erber G., Holzleitner F., Kastner M., Stampfer K. (2016). Effect of multi-tree handling and tree-size on harvester performance in small-diameter hardwood thinnings. Silva Fennica vol. 50 no. 1 article id 1428. 17p.
Highlights• Harvesting with the accumulating energy wood head EF28 was studied under small tree dimension (8 dm³) in hardwood thinnings.• Reasonable productivity was achieved.• Maximum achieved cutting diameter in hornbeam stand was 23 cm and 15% lower than in softwood stands.• Head has potential under such conditions.
AbstractEarly thinnings are laborious and costly. Thus forest companies are searching for cost and time efficient ways to carry out this task. The study's purpose was to determine the productivity of the EF28 accumulating energy wood harvesting head in harvesting small-diameter hornbeam (Carpinus betulus L.) undergrowth trees and evaluate the effect of its multi-tree handling (MTH) capacity on time consumption. The harvester was a wheeled, three-axle Komatsu 911. A time study of 7.1 hours on 19 plots, with a total area of 0.76 ha was conducted. On average, the harvested tree volume was 8 dm³ and the stand density was 2666 trees/ha. The productivity was modelled with MTH conduction, mean diameter at breast height and the number of trees handled per cycle as independent variables. On average, MTH took 27% longer per cycle, increased extracted volume per cycle by 33% and consequently increased productivity with 5.0%. In 71.9% of the cycles more than one tree was handled and if so, dimensions were smaller than in single-tree handling (5.8 cm vs. 12.0 cm). Maximum felling diameter of 23 cm was about 15% smaller than in softwood (according to the manufacturer's specifications) and the driver didn't exploit the EF28's theoretical potential in terms of trees handled per cycle. It can be concluded that the head could significantly improve productivity in small-diameter wood procurement.