Urinary bladder filling and emptying requires coordinated control of bladder body and urethral smooth muscles. Bladder dome, midbladder, base, and urethra showed significant differences in the percentage of 20-kDa myosin light chain (LC20) phosphorylation (35.45 +/- 4.6, 24.7 +/- 2.2, 13.6+/- 2.1, and 12.8 +/- 2.7%, respectively) in resting muscle. Agonist-mediated force was associated with a rise in LC20 phosphorylation, but the extent of phosphorylation at all levels of force was less for urethral than for bladder body smooth muscle. RT-PCR and quantitative competitive RT-PCR analyses of total RNA from bladder body and urethral smooth muscles revealed only a slight difference in myosin heavy chain mRNA copy number per total RNA, whereas mRNA copy numbers for NH2-terminal isoforms SM-B (inserted) and SM-A (noninserted) in these muscles showed a significant difference (2.28 x 10(8) vs. 1.68 x 10(8) for SM-B and 0.12 x 10(8) vs. 0.42 x 10(8) for SM-A, respectively), which was also evident at the protein level. The ratio of COOH-terminal isoforms SM2:SM1 in the urethra was moderately but significantly lower than that in other regions of the bladder body. A high degree of LC20 phosphorylation and SM-B in the bladder body may help to facilitate fast cross-bridge cycling and force generation required for rapid emptying, whereas a lower level of LC20 phosphorylation and the presence of a higher amount of SM-A in urethral smooth muscle may help to maintain the high basal tone of urethra, required for urinary continence.