Drilling of the active TransAtlantic Geotraverse (TAG) deposit indicates that the size of the mound-stockwork complex is approximately 3.9 million t, including 2.7 million t of massive and semi-massive sulfide (~2% Cu) at the seafloor and 1.2 million t of mineralized breccias (~1% Cu) in a subseafloor stockwork. Quartz-pyrite veining in the stockwork zone extends from about 40 meters below seafloor (mbsf) to a depth of 95 mbsf. Siliceous wallrock breccias in the lower part of the stockwork grade abruptly into chloritized basalt breccias at the margins of the mineralized zone, and massive sulfides at the flanks of the deposit onlap relatively unaltered, partially hematized basalts. The pipe-like dimensions of the stockwork zone do not exceed the diameter of the sulfide mound. Comparisons with samples collected during earlier dive series confirm that the vent complexes at the surface of the mound are not representative of the bulk composition of the deposit. Steep vertical metal zonation within the mound suggests that a long history of hydrothermal reworking has effectively stripped the constituents that are soluble at lower temperatures from the massive sulfides and concentrated them at the top of the deposit through a process of zone refining. The bulk of the mound is composed of massive pyrite and anhydrite-cemented breccias. The massive anhydrite (~165,000 t) occupies a high-temperature zone, immediately beneath the central Black Smoker Complex and above the quartz-rich stockwork. Fracturing in the underlying quartz-pyrite stockwork also has resulted in anhydrite veining at considerable depths in the stockwork zone. Despite the abundance of anhydrite in the mound, the amount of seawater penetrating the region of hightemperature upflow is small in comparison to the total mass flux of hydrothermal fluid. The anhydrite has been deposited by conductive heating of a small amount of entrained seawater at the margins of high-temperature conduits, and little or no mixing has occurred with the end-member fluids. Collapse of the anhydrite-supported portion of the mound following major episodes of hydrothermal upflow has caused extensive in situ brecciation of the mound and is an important mechanism for the formation of "breccia ores" in the deposit. Although anhydrite is not well preserved in the geologic record, given its retrograde solubility, it has likely played an important role in the development of similar ore types in ancient massive sulfides. The morphology, size, and bulk composition of the TAG mound-stockwork complex is identical to that of some of the largest Cyprus-type massive sulfide deposits in the Troodos ophiolite. Typical Cyprus-type deposits comprise massive brecciated pyrite ores, underlain by a vertically extensive quartz-pyrite-chlorite stockwork. Sandy pyrite or conglomeratic ore, similar to that found in the TAG mound, is characteristic of the upper parts of Cyprus-type deposits. Textures in these ores, previously attributed to seafloor weathering and erosion, are most likely the result of anhydr...