The TAG active hydrothermal mound, located 2.4 km east of the neovolcanic zone at 26oN, Mid-Atlantic Ridge, is -200 rn in diameter, exhibits 50 rn of relief, and is covered entirely by hydrothermal precipitates. Eight different types of vent solids were recovered from the mound by the submersibles Alvin and Mir in 1986, 1990, and 1991. Detailed petrographic and geochemical studies of samples and their distribution are used to deduce patterns of fluid flowand seawater/hydrothermal fluid interaction. Geochemical modeling calculations using fluid composition data corroborate these interpretations. Current activity includes highly focused flow of 363øC fluid from a chimney cluster on the top of the mound and deposition of a high fS2-jD 2 mineral assemblage that reflects low concentrations of H2S in black smoker fluid. Slow percolation of black smoker fluid pooled beneath the black smoker cluster and entrainment of seawater result in formation of massive sulfide crusts and massive anhydrite. These three sample types are enriched in Co and Se. Blocks of sulfide and white smoker chimneys, enriched in Zn, Au, Ag, $b, Cd, and Pb, are forming on the surface of the mound from black smoker fluid that has been modified by mixing with entrained seawater, precipitation of sulfides and anhydrite, and dissolution of sphalerite within the mound. This is the first time that on-going remobilization, zone refinement, and significant modification of high-temperature fluid in the near surface has been documented in a seafloor hydrothermal system. Deposits of ocherous material and massive sulfide with outer oxidized layers that formed during previous hydrothermal episodes are exposed on the steep outer walls of the mound. Studies of the full range of samples demonstrate that highly focused fluid flow, consequent seawater entrainment, and mixing within the mound can result in formation of a large seafloor hydrothermal deposit exhibiting sample types similar to those observed in Cyprus-type ore bodies. Introduction Detailed studies of active seafloor vent sites allow investigation of the interrelationships among geologic setting, fluid composition, styles of seawater/hydrothermal fluid interaction, mineralogy and texture, metal remobilization, zone refinement, and the overall structure and development of massive sulfide deposits. The TAG active mound, located at 26øN, Mid-Atlantic Ridge (MAR), is particularly useful for investigating such interrelationships. The mound itself is large (-200 m in diameter), distinctly circular in plan view, with all black smoker activity concentrated in one area [Thompson et al., 1988]. This is in contrast to most other active seafloor vent sites where the size of individual mounds is considerably smaller (<10-30 m diameter), multiple Copyright 1995 by the American Geophysical Union. Paper number 95JB00610. 0148-0227/95/95JB-006 ! 0505.00 small deposits are aligned parallel to the ridge axis, and black smoker chimneys are discrete features dispersed on top of small mounds, instead of clustered in one area [...
The discovery of metal-depositing hot springs on the sea floor, and especially their link to chemosynthetic life, was among the most compelling and significant scientific advances of the twentieth century. More than 300 sites of hydrothermal activity and sea-floor mineralization are known on the ocean floor. About 100 of these are sites of high-temperature venting and polymetallic sulfide deposits. They occur at mid-ocean ridges (65%), in back-arc basins (22%), and on submarine volcanic arcs (12%). Although high-temperature, 350°C, black smoker vents are the most recognizable features of sea-floor hydrothermal activity, a wide range of different styles of mineralization has been found. Different volcanic substrates, including mid-ocean ridge basalt, ultramafic intrusive rocks, and more evolved volcanic suites in both oceanic and continental crust, as well as temperature-dependent solubility controls, account for the main geochemical associations found in the deposits. Although end-member hydrothermal fluids mainly originate in the deep volcanic basement, the presence of sediments and other substrates can have a large effect on the compositions of the vent fluids. In arc and backarc settings, vent fluid compositions are broadly similar to those at mid-ocean ridges, but the arc magmas also supply a number of components to the hydrothermal fluids.The majority of known black smoker vents occur on fast-spreading mid-ocean ridges, but the largest massive sulfide deposits are located at intermediate-and slow-spreading centers, at ridge-axis volcanoes, in deep backarc basins, and in sedimented rifts adjacent to continental margins. The range of deposit sizes in these settings is similar to that of ancient volcanic-associated massive sulfide (VMS) deposits. Detailed mapping, and in some cases drilling, indicates that a number of deposits contain 1 to 5 million tons (Mt) of massive sulfide (e.g., TAG hydrothermal field on the Mid-Atlantic Ridge, deposits of the Galapagos Rift, and at 13°N on the East Pacific Rise). Two sediment-hosted deposits, at Middle Valley on the Juan de Fuca Ridge and in the Atlantis II Deep of the Red Sea, are much larger (up to 15 and 90 Mt, respectively).In the western Pacific, high-temperature hydrothermal systems occur mainly at intraoceanic back-arc spreading centers (e.g., Lau basin, North Fiji basin, Mariana trough) and in arc-related rifts at continental margins (e.g., Okinawa trough). In contrast to the mid-ocean ridges, convergent margin settings are characterized by a range of different crustal thicknesses and compositions, variable heat flow regimes, and diverse magma types. These variations result in major differences in the compositions and isotopic systematics of the hydrothermal fluids and the mineralogy and bulk compositions of the associated mineral deposits. Intraoceanic back-arc basin spreading centers host black smoker vents that, for the most part, are very similar to those on the mid-ocean ridges. However, isotopic data from both the volcanic rocks and the sulfide deposits hig...
Brothers volcano, which is part of the active Kermadec arc, northeast of New Zealand, forms an elongate edifice 13 km long by 8 km across that strikes northwest-southeast. The volcano has a caldera with a basal diameter of ~3 km and a floor at 1,850 m below sea level, surrounded by 290-to 530-m-high walls. A volcanic cone of dacite rises 350 m from the caldera floor and partially coalesces with the southern caldera wall. Three hydrothermal sites have been located: on the northwest caldera wall, on the southeast caldera wall, and on the dacite cone. Multiple hydrothermal plumes rise ~750 m through the water column upward from the caldera floor, originating from the northwest caldera walls and atop the cone, itself host to three separate vent fields (summit, upper flank, northeast flank). In 1999, the cone site had plumes with relatively high concentrations of gas with a ∆pH of-0.27 relative to seawater (proxy for CO2 + S gases), dissolved H2S up to 4,250 nM, high concentrations of particulate Cu (up to 3.4 nM), total dissolvable Fe (up to 4,720 nM), total dissolvable Mn (up to 260 nM) and Fe/Mn values of 4.4 to 18.2. By 2002, plumes from the summit vent field had much lower particulate Cu (0.3 nM), total dissolvable Fe (175 nM), and Fe/Mn values of 0.8 but similar ∆pH (-0.22) and higher H2S (7,000 nM). The 1999 plume results are consistent with a magmatic fluid component with the concentration of Fe suggesting direct exsolution of a liquid brine, whereas the much lower concentrations of metals but higher overall gas contents in the 2002 plumes likely reflect subsea-floor phase separation. Plumes above the northwest caldera site are chemically distinct, and their compositions have not changed over the same 3-year interval. They have less CO2 (∆pH of-0.09), no detectable H2S, total dissolved Fe of 955 nM, total dissolved Mn of 150 nM, and Fe/Mn of 6.4. An overall increase in 3 He/ 4 He values in the plumes from R/RA = 6.1 in 1999 to 7.2 in 2002 is further consistent with a magmatic pulse perturbing the system. The northwest caldera site is host to at least two large areas (~600 m by at least 50 m) of chimneys and subcropping massive sulfide. One deposit is partially buried by sediment near the caldera rim at ~1,450 m, whereas the other crops out along narrow, fault-bounded ledges between ~1,600 and 1,650 m. Camera tows imaged active 1-to 2-m-high black smoker chimneys in the deeper zone together with numerous 1-to 5-m-high inactive spires, abundant sulfide talus, partially buried massive sulfides, and hydrothermally altered volcanic rocks. 210 Pb/ 226 Ra dating of one chimney gives an age of 27 ± 6 years; 226 Ra/Ba dating of other mineralization indicates ages up to 1,200 years. Formation temperatures derived from ∆ 34 Ssulfate-sulfide mineral pairs are 245°to 295°for the northwest caldera site, 225°to 260°C for the southeast caldera and ~260°to 305°C for the cone. Fluid inclusion gas data suggest subsea-floor phase separation occurred at the northwest caldera site. Alteration minerals identified include silicates, ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.