Dion–Jacobson (DJ) phase of 2D hybrid perovskites has recently attracted intensive attention owing to their remarkable optoelectronic properties and superior structural stability. In spite of great endeavors, only a few DJ‐type multilayered hybrid perovskites are obtained and most of them are constructed by very small organic spacer cations (e.g., Cs+ and CH3NH3+). It is still challenging to incorporate larger spacing moieties inside the perovskite cages for accomplishing excellent photoelectric properties. Herein, a newly tailored member of DJ‐type 2D perovskites, (HIS)(DMA)Pb2Br7 (1, where HIS2+ is histammonium and DMA+ is dimethylammonium), of which the perovskite cavities display a remarkable structural distortion to accommodate relatively larger secondary DMA+ cation as the “perovskitizer” is acquired. The monolayers of divalent HIS2+ organic cations directly link to inorganic sheets through NH∙∙∙Br hydrogen bonds, thus eliminating the van der Waals gap in 2D Ruddlesden–Popper counterparts and enabling superior phase stability. As a result, crystal‐based array photodetector of 1 shows fascinating photoactive activities of high detectivity (1.2 × 1013 Jones), large responsivity (18.1 A W−1), and antifatigue behavior, along with polarization‐sensitive detection based on the intrinsic anisotropy. Such findings disclose the potential of 1 for efficient photodetection, and definitely enrich the booming family of 2D hybrid perovskites.