Abstract:We study several classical decision problems on finite automata under the (Strong) Exponential Time Hypothesis. We focus on three types of problems: universality, equivalence, and emptiness of intersection. All these problems are known to be CoNP-hard for nondeterministic finite automata, even when restricted to unary input alphabets. A different type of problems on finite automata relates to aperiodicity and to synchronizing words. We also consider finite automata that work on commutative alphabets and those working on two-dimensional words.