One of the principal advantages of a double-shell capsule design is the potential for ignition without requiring cryogenic implosions. These designs compress deuterium fuel by transferring kinetic energy from a laser-ablated outer shell to an inner shell by means of a nearly elastic symmetric collision. However, prior to this collision the inner shell experiences varying levels of preheat such that any nonuniformities can evolve significantly. It is the condition of these perturbations at the time the collision-induced shock compresses the inner shell that ultimately dictates capsule performance. With this in mind, a series of experiments have been performed on the OMEGA laser facility [R. T. Boehly et al., Opt. Comm. 133, 495 (1997)] that produce highly resolved measurements of defect evolution under heated-and-shocked conditions. Tin L-shell radiation is used to heat a layered package of epoxy and foam. The epoxy can be engineered with a variety of surface perturbations or defects. As the system evolves, a strong shock can be introduced with the subsequent hydrodynamic behavior imaged on calibrated film via x-ray radiography. This technique allows density variations of the evolving system to be quantitatively measured. This paper summarizes the hydrodynamic behavior of rectangular gaps under heated conditions with detailed experimental measurements of their residual density perturbations. Moreover, the impact of these residual density perturbations on shock deformation and material flow is discussed.