With the addition of inductive poloidal current drive for current profile control in the Madison Symmetric Torus (MST) reversed field pinch, the magnetic fluctuation amplitude halves, leading to reduced energy and particle transport. A four-to five-fold increase in the energy confinement time to t E ϳ 5 ms with both decreased Ohmic input power and increased stored thermal energy coincides with record low fluctuation amplitude and record high electron temperature ϳ600 eV (for MST). b ͓ 2m o ͗p͘͞B͑a͒ 2 ͔ increases from 6% to 8%. Other improvements include reduced electrostatic edge turbulence and plasma impurity content. [S0031-9007(96)02046-7] PACS numbers: 52.55. Hc, 52.25.Fi, 52.25.Gj, 52.35.Py
Reduction of core-resonant mϭ1 magnetic fluctuations and improved confinement in the Madison Symmetric Torus ͓Dexter et al., Fusion Technol. 19, 131 ͑1991͔͒ reversed-field pinch have been routinely achieved through control of the surface poloidal electric field, but it is now known that the achieved confinement has been limited in part by edge-resonant mϭ0 magnetic fluctuations. Now, through refined poloidal electric field control, plus control of the toroidal electric field, it is possible to reduce simultaneously the mϭ0 and mϭ1 fluctuations. This has allowed confinement of high-energy runaway electrons, possibly indicative of flux-surface restoration in the usually stochastic plasma core. The electron temperature profile steepens in the outer region of the plasma, and the central electron temperature increases substantially, reaching nearly 1.3 keV at high toroidal plasma current ͑500 kA͒. At low current ͑200 kA͒, the total beta reaches 15% with an estimated energy confinement time of 10 ms, a tenfold increase over the standard value which for the first time substantially exceeds the constant-beta confinement scaling that has characterized most reversed-field-pinch plasmas.
Current profile control is employed in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric-field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% and the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch.
Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiationhydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which to compare these solutions by studying supersonic and diffusive flow in the laboratory. We present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at the end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.