The study of moisture transfer inside building materials is an important issue in building physics. The hygric characterization of such materials has become a common practice for the estimation of the hygrothermal performance of buildings. However, their aging caused by mechanical loading and environmental factors inevitably affects their permeability to moisture ingress, and the knowledge of how this permeability is affected by damage and cracks is still incomplete.The effects of diffuse damage caused by mechanical loading on the water vapour permeability of fibre-reinforced mortar were studied. A full experimental setup is presented including observation of the porous structure, mechanical, and hygric characterization. Uniaxial tensile loading was applied on prismatic samples while their damage level was measured. Then, the moisture content of damaged and undamaged samples was monitored during variations of ambient relative humidity. Two numerical methods are presented and used for the comparison of the water vapour permeability of multiple samples presenting various levels of damage. By this methodology, diffuse damage caused by mechanical loading is shown to have an impact on the water vapour transfer inside the material.