A striking variety of glycosylation occur in the Golgi complex in a protein-specific manner, but how this diversity and specificity are achieved remains unclear. Here we show that stacked fragments (units) of the Golgi complex dispersed in Drosophila imaginal disk cells are functionally diverse. The UDP-sugar transporter FRINGE-CONNECTION (FRC) is localized to a subset of the Golgi units distinct from those harboring SULFATELESS (SFL), which modifies glucosaminoglycans (GAGs), and from those harboring the protease RHOMBOID (RHO), which processes the glycoprotein SPITZ (SPI). Whereas the glycosylation and function of NOTCH are affected in imaginal disks of frc mutants, those of SPI and of GAG core proteins are not, even though FRC transports a broad range of glycosylation substrates, suggesting that Golgi units containing FRC and those containing SFL or RHO are functionally separable. Distinct Golgi units containing FRC and RHO in embryos could also be separated biochemically by immunoisolation techniques. We also show that Tn-antigen glycan is localized only in a subset of the Golgi units distributed basally in a polarized cell. We propose that the different localizations among distinct Golgi units of molecules involved in glycosylation underlie the diversity of glycan modification.fringe connection ͉ glycosylation ͉ posttranslational modification T he pattern of glycosylation is extremely diverse, yet is highly specific to each protein. How can this specificity (and diversity) be achieved? There are Ͼ300 glycosylenzymes in humans and Ͼ100 in Drosophila, but is their enzymatic specificity sufficient to explain the precise modification of all substrates? One possible mechanism that might also contribute to the specific (and diverse) pattern of glycosylation would be the localization͞compartmentalization of glycosylenzymes.The Golgi complex, where protein glycosylation takes place, has been regarded as a single functional unit, consisting of cis-, medial-, and transcisternae in mammalian cells. However, the three-dimensional reconstruction of electron microscopic images of the mammalian Golgi structure has suggested the existence of more than one Golgi stack, with the individual stacks being connected into a ribbon by tubules bridging equivalent cisternae (1). Furthermore, during mitosis, the Golgi cisternae of mammalian cells become fragmented without their disassembly (2, 3). In Drosophila, Golgi cisternae are stacked but are not connected to form a ribbon at the embryonic and pupal stages even during interphase (4, 5), although there has been no evidence to date to indicate functional differences among the Golgi fragments.We previously reported a Drosophila UDP-sugar transporter, FRINGE CONNECTION (FRC), that transports a broad range of UDP-sugars that can be used for the synthesis of various glycans, including N-linked types, GAGs, and mucin types (6, 7). Interestingly, despite its broad specificity, loss-of-function studies have revealed that FRC is selectively required for Notch glycosylation, but not for GA...