Octopamine is likely to be an important neuroactive molecule in invertebrates. Here we report the molecular cloning of the Drosophila melanogaster gene, which encodes tyramine beta-hydroxylase (TBH), the enzyme that catalyzes the last step in octopamine biosynthesis. The deduced amino acid sequence of the encoded protein exhibits 39% identity to the evolutionarily related mammalian dopamine beta-hydroxylase enzyme. We generated a polyclonal antibody against the protein product of T beta h gene, and we demonstrate that the TBH expression pattern is remarkably similar to the previously described octopamine immunoreactivity in Drosophila. We further report the creation of null mutations at the T beta h locus, which result in complete absence of TBH protein and blockage of the octopamine biosynthesis. T beta h-null flies are octopamine-less but survive to adulthood. They are normal in external morphology, but the females are sterile, because although they mate, they retain fully developed eggs. Finally, we demonstrate that this defect in egg laying is associated with the octopamine deficit, because females that have retained eggs initiate egg laying when transferred onto octopamine-supplemented food.
The embryonic lethal abnormal visual system (elav) gene of Drosophila melanogaster is required for the development and maintenance of the nervous system. Transcripts from this locus are distributed ubiquitously throughout the nervous system at all developmental stages. A product of this gene, the ELAV protein, has homology to known RNA binding proteins. The localization of the ELAV protein was studied in all developmental stages using antibodies that were generated against a hybrid protein made in Escherichia coli. In general, these data are consistent with previous results and demonstrate that (1) the ELAV protein is detected in the developing embryonic nervous system at a time coincident with the birth of the first neurons, (2) the ELAV protein is first detected in the majority of neurons of the central and peripheral nervous systems of embryos, larvae, pupae, and adults, (3) the ELAV protein appears to be localized to the nucleus, and (4) the ELAV protein is not detected in neuroblasts or identifiable glia. These data also provide new information concerning elav expression and show that (1) ELAV is not expressed in the ganglion mother cells (GMCs), (2) while the ELAV protein is localized to the nucleus, it is not uniformly distributed throughout this structure, and (3) other Drosophila species do express an ELAV-like antigen. We propose that the elav gene provides a neuronal-housekeeping function that is required for the successful posttranscriptional processing of transcripts from a set of genes the function of which is required for proper neuronal development and maintenance.
Although abnormal processing of beta-amyloid precursor protein (APP) has been implicated in the pathogenic cascade leading to Alzheimer's disease, the normal function of this protein is poorly understood. To gain insight into APP function, we used a molecular-genetic approach to manipulate the structure and levels of the Drosophila APP homolog APPL. Wild-type and mutant forms of APPL were expressed in motoneurons to determine the effect of APPL at the neuromuscular junction (NMJ). We show that APPL was transported to motor axons and that its overexpression caused a dramatic increase in synaptic bouton number and changes in synapse structure. In an Appl null mutant, a decrease in the number of boutons was found. Examination of NMJs in larvae overexpressing APPL revealed that the extra boutons had normal synaptic components and thus were likely to form functional synaptic contacts. Deletion analysis demonstrated that APPL sequences responsible for synaptic alteration reside in the cytoplasmic domain, at the internalization sequence GYENPTY and a putative G(o)-protein binding site. To determine the likely mechanisms underlying APPL-dependent synapse formation, hyperexcitable mutants, which also alter synaptic growth at the NMJ, were examined. These mutants with elevated neuronal activity changed the distribution of APPL at synapses and partially suppressed APPL-dependent synapse formation. We propose a model by which APPL, in conjunction with activity-dependent mechanisms, regulates synaptic structure and number.
Tomato bushy stunt virus (TBSV), a positive-strand RNA virus, causes extensive inward vesiculations of the peroxisomal boundary membrane and formation of peroxisomal multivesicular bodies (pMVBs). Although pMVBs are known to contain protein components of the viral membrane-bound RNA replication complex, the mechanisms of protein targeting to peroxisomal membranes and participation in pMVB biogenesis are not well understood. We show that the TBSV 33-kD replication protein (p33), expressed on its own, targets initially from the cytosol to peroxisomes, causing their progressive aggregation and eventually the formation of peroxisomal ghosts. These altered peroxisomes are distinct from pMVBs; they lack internal vesicles and are surrounded by novel cytosolic vesicles that contain p33 and appear to be derived from evaginations of the peroxisomal boundary membrane. Concomitant with these changes in peroxisomes, p33 and resident peroxisomal membrane proteins are relocalized to the peroxisomal endoplasmic reticulum (pER) subdomain. This sorting of p33 is disrupted by the coexpression of a dominant-negative mutant of ADP-ribosylation factor1, implicating coatomer in vesicle formation at peroxisomes. Mutational analysis of p33 revealed that its intracellular sorting is also mediated by several targeting signals, including three peroxisomal targeting elements that function cooperatively, plus a pER targeting signal resembling an Arg-based motif responsible for vesicle-mediated retrieval of escaped ER membrane proteins from the Golgi. These results provide insight into virus-induced intracellular rearrangements and reveal a peroxisome-to-pER sorting pathway, raising new mechanistic questions regarding the biogenesis of peroxisomes in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.