The catecholamines play a major role in the regulation of behavior. Here we investigate, in the fly Drosophila melanogaster, the role of dopamine and octopamine (the presumed arthropod homolog of norepinephrine) during the formation of appetitive and aversive olfactory memories. We find that for the formation of both types of memories, cAMP signaling is necessary and sufficient within the same subpopulation of mushroom-body intrinsic neurons. On the other hand, memory formation can be distinguished by the requirement for different catecholamines, dopamine for aversive and octopamine for appetitive conditioning. Our results suggest that in associative conditioning, different memories are formed of the same odor under different circumstances, and that they are linked to the respective motivational systems by their specific modulatory pathways.
Octopamine is likely to be an important neuroactive molecule in invertebrates. Here we report the molecular cloning of the Drosophila melanogaster gene, which encodes tyramine beta-hydroxylase (TBH), the enzyme that catalyzes the last step in octopamine biosynthesis. The deduced amino acid sequence of the encoded protein exhibits 39% identity to the evolutionarily related mammalian dopamine beta-hydroxylase enzyme. We generated a polyclonal antibody against the protein product of T beta h gene, and we demonstrate that the TBH expression pattern is remarkably similar to the previously described octopamine immunoreactivity in Drosophila. We further report the creation of null mutations at the T beta h locus, which result in complete absence of TBH protein and blockage of the octopamine biosynthesis. T beta h-null flies are octopamine-less but survive to adulthood. They are normal in external morphology, but the females are sterile, because although they mate, they retain fully developed eggs. Finally, we demonstrate that this defect in egg laying is associated with the octopamine deficit, because females that have retained eggs initiate egg laying when transferred onto octopamine-supplemented food.
Octopamine is an important neuroactive substance that modulates several physiological functions and behaviors of invertebrate species. Its biosynthesis involves two steps, one of which is catalyzed by Tyramine beta-hydroxylase enzyme (TBH). The Tbetah gene has been previously cloned from Drosophila melanogaster, and null mutations have been generated resulting in octopamine-less flies that show profound female sterility. Here, I show that ovulation process is defective in the mutant females resulting in blockage of mature oocytes within the ovaries. The phenotype is conditionally rescued by expressing a Tbetah cDNA under the control of a hsp70 promoter in adult females. Fertility of the mutant females is also restored when TBH is expressed, via the GAL4-UAS system, in cells of the CNS abdominal ganglion that express TBH and produce octopamine. This neuronal population differs from the dopamine- and serotonin-expressing cells indicating distinct patterns of expression and function of the three substances in the region. Finally, I demonstrate that these TBH-expressing cells project to the periphery where they innervate the ovaries and the oviducts of the reproductive system. The above results point to a neuronal focus that can synthesize and release octopamine in specific sites of the female reproductive system where the amine is required to trigger ovulation.
Octopamine has been proposed as a neurotransmitter/modulator/hormone serving a variety of physiological functions in invertebrates. We have initiated a study of octopamine in the fruit fly Drosophila melanogaster, which provides an excellent system for genetic and molecular analysis of neuroactive molecules. As a first step, the distribution of octopamine immunoreactivity was studied by means of an octopamine-specific antiserum. We focused on the central nervous system (CNS) and on the innervation of the larval body wall muscles. The larval octopamine neuronal pattern was composed of prominent neurons along the midline of the ventral ganglion, whereas brain lobes were devoid of immunoreactive somata. However, intense immunoreactive neuropil was observed both in the ventral ganglion and in the brain lobes. Some of the immunoreactive neurons sent peripheral fibers that innervated most of the muscles of the larval body wall. Octopamine immunoreactivity was observed at neuromuscular junctions in all larval stages, being present in a well-defined subset of synaptic boutons, type II. Octopamine immunoreactivity in the adult CNS revealed many additional neurons compared to the larval CNS, indicating that at least a subset of adult octopamine neurons may differentiate during metamorphosis. Major octopamineimmunoreactive neuronal clusters and neuronal processes were observed in the subesophageal ganglion, deutocerebrum, and dorsal protocerebrum, and intense neuropil staining was detected primarily in the optic lobes and in the central complex.Keywords octopamine neuron; insect nervous system; neuromuscular junction; synaptic bouton; immunocytochemistry Biogenic amines as chemical messengers in the nervous system of arthropods are thought to play crucial roles in several aspects of their behavior (reviewed by Bicker and Menzel, 1989). Octopamine, one of the biogenic amines extensively studied in invertebrates, has been proposed as neurotransmitter, neuromodulator, and neurohormone in a variety of physiological processes (for reviews, see David and Coulon, 1985;Evans, 1985Evans, , 1992 Address reprint requests to Dr. Maria Monastirioti, Department of Biology, Brandeis University, Waltham, MA 02254.. HHS Public Access Author Manuscript Author ManuscriptAuthor ManuscriptAuthor Manuscript Bicker and Menzel, 1989). In crustaceans, octopamine has been implicated in the neuromodulation of rapid response circuits controlling the escape behavior of crayfish (Glanzman and Krasne, 1983) and in the aggressive and submissive postures in lobsters (reviewed by Kravitz, 1988). In a variety of insect species, octopamine has been implicated in both central and peripheral neural functions. It stimulates activity of the firefly light organ (Nathanson, 1979), induces flight motor activity, and acts as neurotransmitter/modulator in the locust central nervous system (CNS; Sombati and Hoyle, 1984). Octopamine regulates hormone release in cockroaches (Downer et al., 1984), induces lipid and carbohydrate metabolism in crickets (Fields ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.