Parkinson disease is caused by the death of midbrain dopamine neurons from oxidative stress, abnormal protein aggregation, and genetic predisposition. In 2003, Bonifati et al. (23) found that a single amino acid mutation in the DJ-1 protein was associated with early-onset, autosomal recessive Parkinson disease (PARK7). The mutation L166P prevents dimerization that is essential for the antioxidant and gene regulatory activity of the DJ-1 protein. Because low levels of DJ-1 cause Parkinson, we reasoned that overexpression might stop the disease. We found that overexpression of DJ-1 improved tolerance to oxidative stress by selectively up-regulating the rate-limiting step in glutathione synthesis. When we imposed a different metabolic insult, A53T mutant ␣-synuclein, we found that DJ-1 turned on production of the chaperone protein Hsp-70 without affecting glutathione synthesis. After screening a number of small molecules, we have found that the histone deacetylase inhibitor phenylbutyrate increases DJ-1 expression by 300% in the N27 dopamine cell line and rescues cells from oxidative stress and mutant ␣-synuclein toxicity. In mice, phenylbutyrate treatment leads to a 260% increase in brain DJ-1 levels and protects dopamine neurons against 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) toxicity. In a transgenic mouse model of diffuse Lewy body disease, long-term administration of phenylbutyrate reduces ␣-synuclein aggregation in brain and prevents age-related deterioration in motor and cognitive function. We conclude that drugs that up-regulate DJ-1 gene expression may slow the progression of Parkinson disease by moderating oxidative stress and protein aggregation.
Dopamine cell death in Parkinson disease (PD)3 results from both genetic and environmental factors (1-5). Six genes have been linked to PD including ␣-synuclein, Parkin, UCHL1, DJ-1, PINK1, and LRRK2 (6 -7). ␣-Synuclein mutations (A53T, A30P, and E46K) cause autosomal dominant forms of PD (8 -10). Even in sporadic cases of PD, aggregated ␣-synuclein has been found to be a major component of Lewy bodies (11-13). The toxicity of mutant forms of ␣-synuclein results from increased formation of oligomeric and fibrillar aggregates (14 -17). We and others (18 -22) have demonstrated that expression of A53T mutant ␣-synuclein results in protein aggregation and cell death in cultured dopamine neurons.Mutations in the DJ-1 gene (PARK7) lead to early-onset, autosomal recessive Parkinson disease (23-26). Ordinarily, DJ-1 protects cells by a number of mechanisms. The protein can self-oxidize by forming cysteine-sulfinic acid under oxidizing conditions, thereby shifting its pI from 6.1 to 5.8 (27-28). DJ-1 can sequester the cell death protein Daxx and prevent Daxx-induced apoptosis after oxidative stress (29). DJ-1 can stabilize Nrf2 (nuclear factor erythroid 2-related factor) by preventing association with its inhibitor protein, Keap1, thereby blocking the subsequent ubiquitination of Nrf2 (30).Previously, we have reported that overexpression of WT DJ-1 can prote...