The evolution of microstructures and microchemistry was examined by transmission electron microscopy in coldworked SUS 316 stainless steel components irradiated in a pressurized water reactor to 1-73 dpa at 565-596 K. Homogenous nucleation of dislocation loops, helium bubbles and 0 precipitates was detected. The dislocation loops consisted of a high density of Frank loops and black dots. The black dots are considered to be small Frank loops, some fraction of which could be vacancy-type. The size distribution showed a double peak, which remained unchanged up to 73 dpa, suggesting that the dislocation structure was saturated under a balance of nucleation and disappearance. The helium bubbles were extremely dense and fine, resulting in swelling of less than 0.1%. Such bubble structure was formed under irradiation with a high He/dpa ratio. The 0 precipitation was detected at doses higher than 4 dpa with an increasing density for higher doses. The measured radiation hardening was almost explained by these visible microstructural features. Radiation-induced segregation at grain boundaries was confirmed to continuously develop up to 73 dpa whereas no significant segregation could be detected at Frank loops.