Microelectromechanical systems (MEMS) that require contact of moving parts to implement complex functions exhibit limits to their performance and reliability. Here, we advance our particle tracking method to measure MEMS motion in operando at nanometer, microradian, and millisecond scales. We test a torsional ratcheting actuator and observe dynamic behavior ranging from nearly perfect repeatability, to transient feedback and stiction, to terminal failure. This new measurement capability will help to understand and improve MEMS motion.