Cardiac magnetic resonance imaging (MRI) is widely applied for the noninvasive assessment of cardiac structure and function, and for tissue characterization. For more than 2 decades, 1.5 T has been considered the field strength of choice for cardiac MRI. Although the number of 3-T systems significantly increased in the past 10 years and numerous new developments were made, challenges seem to remain that hamper a widespread clinical use of 3-T MR systems for cardiac applications. As the number of clinical cardiac applications is increasing, with each having their own benefits at both field strengths, no “holy grail” field strength exists for cardiac MRI that one should ideally use. This review describes the physical differences between 1.5 and 3 T, as well as the effect of these differences on major (routine) cardiac MRI applications, including functional imaging, edema imaging, late gadolinium enhancement, first-pass stress perfusion, myocardial mapping, and phase contrast flow imaging. For each application, the advantages and limitations at both 1.5 and 3 T are discussed. Solutions and alternatives are provided to overcome potential limitations. Finally, we briefly elaborate on the potential use of alternative field strengths (ie, below 1.5 T and above 3 T) for cardiac MRI and conclude with field strength recommendations for the future of cardiac MRI.