The NuoD segment (homologue of mitochondrial
49 kDa subunit) of
the proton-translocating NADH:quinone oxidoreductase (complex I/NDH-1)
from Escherichia coli is in the hydrophilic domain
and bears many highly conserved amino acid residues. The three-dimensional
structural model of NDH-1 suggests that the NuoD segment, together
with the neighboring subunits, constitutes a putative quinone binding
cavity. We used the homologous DNA recombination technique to clarify
the role of selected key amino acid residues of the NuoD segment.
Among them, residues Tyr273 and His224 were considered candidates
for having important interactions with the quinone headgroup. Mutant
Y273F retained partial activity but lost sensitivity to capsaicin-40.
Mutant H224R scarcely affected the activity, suggesting that this
residue may not be essential. His224 is located in a loop near the
N-terminus of the NuoD segment (Gly217–Phe227) which is considered
to form part of the quinone binding cavity. In contrast to the His224
mutation, mutants G217V, P218A, and G225V almost completely lost the
activity. One region of this loop is positioned close to a cytosolic
loop of the NuoA subunit in the membrane domain, and together they
seem to be important in keeping the quinone binding cavity intact.
The structural role of the longest helix in the NuoD segment located
behind the quinone binding cavity was also investigated. Possible
roles of other highly conserved residues of the NuoD segment are discussed.