Harmful algal blooms (HABs) pose a significant threat to aquatic ecosystems and human health due to the production of toxins. The identification and quantification of these toxins are crucial for water quality management decisions. This study used DNA analysis (PCR techniques) to identify toxin-producing strains and liquid-chromatography-tandem mass spectrometry (LC-MS/MS) to quantify microcystins in samples from Mindu and Nyumba ya Mungu Dams in Tanzania. The results showed that HABs were detected in both dams. The BLAST results revealed that the 16S gene sequences of uncultured samples were very similar to an Antarctic cyanobacterium, Leptolyngbya sp, Anabaena sp, and Microcystis aeruginosa. Sequences of the cultured samples were most similar to Nodularia spumigena, Amazoninema brasiliense, Anabaena sp, and Microcystis aeruginosa. Further analyses showed that the nucleotide sequence similarity of uncultured isolates from this study and those from the GenBank ranged from 85 to 100%. For cultured isolates from this study and others from the GenBank, nucleotide identity ranged from 81 to 100%. The molecular identification of Microcystis aeruginosa confirmed the presence of HABs in both Mindu and Nyumba ya Mungu Dams in Tanzania. At Mindu Dam, the mean concentrations (± standard deviation) of microcystin-LR, -RR, and -YR were 1.08 ± 0.749 ppm, 0.120 ± 0.0211 ppm, and 1.37 ± 0.862 ppm, respectively. Similarly, at Nyumba ya Mungu Dam, the concentrations of microcystin-LR, -RR, and -YR were 1.07 ± 0.499 ppm, 0.124 ± 0.0224 ppm, and 0.961 ± 0.408 ppm, respectively. This paper represents the first application of PCR and LC-MS/MS to study microcystins in small freshwater reservoirs in Tanzania. This study confirms the presence of toxin-producing strains of Microcystis aeruginosa in both dams and also provides evidence of the occurrence of microcystins from these strains. These findings contribute in improving the monitoring of HABs contamination and their potential impact on water quality in Tanzanian reservoirs.